متعددة حدود دويرانية

في الرياضيات، المعادلة الدُوَيْرَانِيَّة[1] أو متعددة الحدود الدُوَيْرَانِيَّة أو كثير الحدود الدُوَيْرَانِي من الدرجة n لأي عدد صحيح موجب n، هي متعددة الحدود غير قابل للاختزال الوحيد ذات معاملات صحيحة التي هي قاسمة لـ وليست قاسمة لـ لأي k < n. جذوره كلها جذور الوحدة البدائية ، حيث k أعداد صحيحة الموجبة أقل من n، و k وn أوليان فيما بينهماi هي الوحدة التخيلية). وبعبارة أخرى فإن متعددة الحدود الدويرانية من الدرجة n تساوي

يمكن تعريفها أيضًا على أنها متعددة الحدود واحدية المدخل ذات معاملات صحيحة وهي متعددة الحدود الدنيا على حقل الأعداد المُنْطقة لأي جذر الوحدة من الدرجة n البدائية ( مثال على هذا الجذر).

هناك علاقة مهمة تربط بين كثيرات الحدود الدويرانية وجذور الوحدة البدائية

يوضح أن x هو جذر إذا وفقط إذا كانت عبارة عن جذر الوحدة البدائي من الدرجة d لبعض د الذي يقسم ن.

أمثلة

إذا كان n عددًا أوليًا، فإن

إذا كان n = 2 p حيث p هو عدد أولي فردي، فإن

بالنسبة من n حتى 30، تكون كثيرات الحدود الدويرانية:[2]

حالة متعددة الحدود الدويرانية من الدرجة 105 مثيرة للاهتمام لأن 105 هي أقل عدد صحيح موجب الذي هو حاصل ضرب ثلاثة أعداد أولية فردية متمايزة (3 * 5 * 7) وهذه كثيرة الحدود هي الأولى التي لها معامل غير 1 ، 0 ، أو −1:

مراجع

  1. ^ موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 156، OCLC:1369254291، QID:Q108593221
  2. ^ Sloane, N. J. A. (ed.). "Sequence A013595". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.