تتابع التصوير بالرنين المغناطيسي هو إعداد خاص أثناء التصوير بالرنين المغناطيسي يتم فيه التحكم في تتابع النبضات وتدرج المجال النبضي، مما يؤدي إلى ظهور صورة رنينية بخصائص معينة.[1]
يرجع كل نسيج إلى حالته الطبيعية من التوازن بعد إثارته بعمليات الاسترخاء المستقلة لكل من التوقيت الرأسي (الاسترخاء الطولي؛ ويتمثل في المغنطة الطوليه -في نفس- لاتجاه المجال المغناطيسي الثابت)، والتوقيت الأفقي (الاسترخاء المستعرض؛ المغنطة المستعرضة لاتجاه المجال المغناطيسي الثابت). وللحصول على صورة موزونة بالتوقيت الرأسي فإنه يُسمح باستعادة المغناطيسية قبل قياس إشارة الرنين المغناطيسي عن طريق تغيير وقت التكرار، ويُعتبر هذا الوزن مفيدًا لتقييم القشرة الدماغية، وتحديد الأنسجة الدهنية، وتوصيف آفات الكبد البؤرية، أو بعبارة عامة يُعتبر هذا الوزن مفيدا عند الرغبة في الحصول على معلومات شكلية حول النسيج وكذلك عند التصوير التالي للصبغة. أما في حالة الرغبة في الحصول على صورة موزونة بالتوقيت الأفقي، فإنه يُسمح بتحلل المغنطة قبل قياس إشارة الرنين المغناطيسي عن طريق تغيير وقت الصدى، ويُعد هذا الوزن مفيدًا في الكشف عن الوذمات والالتهابات، وكشف آفات المادة البيضاء، وتقييم التشريح البؤري للبروستاتاوالرحم.
يتمثل العرض القياسي لصور التصوير بالرنين المغناطيسي في تمثيل خصائص السوائل في الصور بالأبيض والأسود، حيث تظهر الأنسجة المختلفة على النحو التالي:
تُجمع الصور الموزونة بكثافة البروتون من خلال وقت التكرار الطويل ووقت الصدى القصير،[31] وهذا الوزن يُعطي تمييز أكثر وضوحًا بين المادة الرمادية (الساطعة) والمادة البيضاء (الرمادي الداكن) في صور الدماغ، ولكن مع تباين ضئيل بين الدماغ و السائل الدماغي الشوكي. ويُعتبر هذا الوزن مفيد جدًا في الكشف عن أمراض المفاصل وإصاباتها.[32]
الصدى المتدرج
يُمثل تتابع صدى التدرج أساس العديد من التتابعات المشتقة المهمة مثل التصوير المستوي بالصدى وتصوير المدوارة الحرة لحالة الاضطراد، حيث يُسمح فيه بوقت تكرار قصير جدًا، وبالتالي الحصول على صور في وقت قصير.
يتميز تتابع صدى التدرج بإستثارة واحدة متبوعة بتدرج على طول محور القراءة يسمى التدرج متغير الطور، يعدل هذا التدرج من الحركة المغزلية بطريقة معتمدة على المكان، بحيث يتم إلغاء الإشارة تمامًا في نهاية التدرج نظرا لانتهاء التماسك بين الحركات المغزلية.
وعند هذه النقطة يتم إعمال تدرج قراءة للقطبية المعاكسة، وذلك للتعويض عن تأثير تدرج التباين، وعندما تكون مساحة تدرج القراءة مساوية لتلك الخاصة بالتدرج غير المتطابق، فإن الحركة المغزلية تدخل في مرحلة جديدة متماسكة (باستثناء تأثيرات استرخاءالتوقيت الأفقي الفعال *T2)، وبالتالي يمكن اكتشاف الإشارة مرة أخرى. تأخذ هذه الإشارة اسم الصدى أو إشارة الصدى المتدرجة، لأنها تنتج من إعادة الطور بسبب التدرج (على عكس إشارة صدى الدوران التي يرجع إعادة تشكيلها إلى نبضة ترددات الراديو).
إفساد
في نهاية القراءة يمكن إبقاء المغنطة المستعرضة المتبقية، أو إنهائها من خلال تطبيق التدرجات المناسبة والإثارة من خلال نبضات ذات تردد راديوي متغير في الطور.
تصوير المدوارة الحرة لحالة الاضطراد
يُمثل تتابع تصوير المدوارة الحرة لحالة الاضطراد تقنية تصوير في الرنين المغناطيسي تَستخدم حالة الاضطراد المغناطيسي، وبشكل عام فإن هذا التتابع يعتمد تتابع صدى التدرج (بزاوية انقلاب صغيرة) مع وقت تكرار قصير.
استعادة الانعكاس
استعادة الإنعكاس ضعيف السوائل
يُمثل استعادة الإنعكاس ضعيف السوائل[34] تتابع نبضات استعادة الانعكاس، يُستخدم لإضعاف إشارة السوائل، ويُمكن استخدامه في تصوير الدماغ للإضعاف السائل الدماغي الشوكي لإخراج الآفات المحيطة بالبطينات، مثل لويحات التصلب المتعدد، كما يمكن قمع إشارة أي نسيج معين، من خلال الاختيار الدقيق لوقت الانعكاس (الوقت بين نبضات الانعكاس ونبضات الإثارة).
شدة استعادة الانعكاس التروبيني
يقيس شدة استعادة الانعكاس التوربيني حجم صدى المغزل التوربيني بعد نبضة انعكاس سابقة، وبالتالي فهو غير حساس للطور.[35]
يتفوق شدة استعادة الانعكاس التوربيني في تقييم اشتباه التهاب العظم والنقيوسرطان الرأس والعنق.[36][37] حيث يظهر التهاب العظم والنقي كمناطق عالية الكثافة، [38] أما سرطانات الرأس والعنق فتعطي إشارة عالية.
الانتشار
تقيس صورة الانتشار في الرنين المغناطيسيانتشار جزيئات الماء في الأنسجة الحيوية،[39] ويُعد هذا النوع من التصوير مفيدًا في تشخيص حالات السكتة الدماغيةوالتصلب المتعدد، كما يساعد على فهم اتصال محاور المادة البيضاء في الجهاز العصبي المركزي بشكل أفضل.[40] وقد وُجد أن جزيئات الماء في الوسط المتوحد الخواص (ككوب من الماء على سبيل المثال) تتحرك بشكل عشوائي طبقا للجريان المضطربوالحركة البراونية، أما في الأنسجة البيولوجية، التي يكون فيها عدد رينولدز منخفضًا بدرجة كافية لحدوث جريان صفيحي، فإن الانتشاريكون متباين الخواص، فجزيء الماء داخل المحورالعصبي (على سبيل المثال) يضغف احتمال عبوره لغشاء المايلين، ولذلك يتحرك الجزيء بشكل أساسي على طول المحور، وبناءا على أنه من المعروف أن الجزيئات الموجودة في فوكسل معين تنتشر بشكل أساسي في اتجاه واحد، فعليه يمكن افتراض أن غالبية الألياف في هذه المنطقة موازية لهذا الاتجاه.
كما يُعد التصوير بالرنين المعناطيسي الموزون بالانتشار أحد تطبيقات صورة الانتشار في الرنين المغناطيسي، والذي يكون شديد الحساسية للتغيرات الحادثة بعد السكتة الدماغية،[42] حيث يُنظر إلى الزيادة في حجم التقييد (الحواجز) أمام انتشار الماء (نتيجة للوذمة الخلوية السامة) على أنها المسؤولة عن ارتفاع الإشارة أثناء التصوير، ويظهر ذلك في غضون من 5-10 دقائق من وقت ظهور أعراض السكتة الدماغية ويبقى لمدة تصل إلى أسبوعين (مقارنة بالتصوير المقطعي المحوسب والذي لا يكتشف تغيرات الاحتشاء الحاد غالبا إلا بعد مدة تصل إلى 4-6 ساعات. وبالاقتران مع تصوير التروية الدماغية فإنه يُمكن للباحثين تسليط الضوء على مناطق «عدم تطابق التروية / الانتشار» التي قد تشير إلى المناطق التي يُمكن إنقاذها عن طريق العلاج بإعادة التروية (استئصال أو انحلال الخثار).
التروية
يتم إجراء التصوير الموزون بالتروية من خلال 3 تقنيات رئيسية:
الصبعة الديناميكية القابلة للتمغنط: حيث يتم حقن صبغة الجادولينيوم، ويحدد التصوير المتكرر والسريع فقدان الإشارة الناجم عن قابلية التمغنط.[43]
يقيس التصوير بالرنين المغناطيسي الوظيفي تغيرات الإشارات في الدماغ والناتجة عن تغير النشاط العصبي، ويُستخدم هذا التصوير لفهم كيفية استجابة الأجزاء المختلفة من الدماغ للمنبهات الخارجية أو النشاط السلبي في حالة الراحة، وله العديد من التطبيقات في البحث السلوكيوالمعرفي، وفي التخطيط لجراحات الأعصاب في بعض مناطق الدماغ،[46][47] ويستخدم الباحثون طرقًا إحصائية لإنشاء خريطة قياسية ثلاثية الأبعاد للدماغ تشير إلى مناطق القشرة المخية التي تُظهر تغيرًا كبيرًا في النشاط كاستجابة للمهمات المختلفة، حيث يتم مسح الدماغ بدقة مكانية منخفضة ولكن بدقة زمنية مرتفعة (عادةً مرة كل 2-3 ثوانٍ)، حيث تؤدي الزيادات في النشاط العصبي إلى تغييرات في إشارة الرنين المغناطيسي عبر التغييرات في الوقت الأفقي الفعال؛[48] ويشار إلى هذه الآلية باسم التصوير المعتمد على مستوي الأكسجين-الدم، حيث تؤدي زيادة النشاط العصبي إلى طلب المزيد من الأكسجين، وتستجيب الأوعية الدموية لهذا الأمر، مما يزيد من كمية الهيموغلوبين المؤكسج (الذي يرفع من إشارة الرنين المغناطيسي) على حساب الهيموغلوبين غير المؤكسج (الذي يخفض من إشارة الرنين المغناطيسي). كما يسمح التصوير المعتمد على مستوي الأكسجين-الدم بتوليد خرائط ثلاثية الأبعاد عالية الدقة للأوعية الدموية الوريدية داخل الأنسجة العصبية.
يُستخدم التصوير بالرنين المغناطيسي متباين الطور لقياس سرعات التدفق في الجسم، وبشكل أساسي لقياس تدفق الدم في القلب وجميع أنحاء الجسم، ويُمكن اعتباره أحد طرق قياس السرعة بالرنين المغناطيسي، ويُشار إليه عادة باسم التصوير باعي الأبعاد (الأبعاد الفراغية الثلاثة بالإضافة إلى بُعد الوقت).[49]
قابلية التمغنط
تُمثل صورة الرنين المغناطيسي الموزنة بقابلية التمغنط نوع جديد من التباين في التصوير بالرنين المغناطيسي مختلف عن كثافة المغزل، والتوقيت الأفقي والتوقيت الرأسي، حيث يستغل هذه التصوير اختلافات الحساسية بين الأنسجة، ويستخدم مسحًا ثلاثي الأبعاد من صدى التدرج، ما ينتج عنه بيانات خاصة وصور معالجة ذات حجم تباين محسّن تكون حساسة جدًا للدم الوريدي والنزيف وتخزين الحديد، ويُستخدم هذا التصوير لتعزيز اكتشاف وتشخيص الأورام وأمراض الأوعية الدموية العصبية (النزيف) والتصلب المتعدد [50] ومرض الزهايمر، كما يكتشف إصابات الدماغ الرضية التي قد لا يُمكن تشخيصها باستخدام الطرق الأخرى.
نقل المغنطة
نقل المغنطة هي تقنية لتحسين تباين الصور في تطبيقات معينة من التصوير بالرنين المغناطيسي.
ترتبط البروتونات المقترنة مع البروتينات، وبالنظر إلى قصر تحلل التوقيت الأفقي لكل منهما فإنهما لا يشاركان عادة في تباين الصورة، ولأن هذه البروتونات تمتلك ذروة رنين ممتدة فإنه يمكن اثارتها بنبضة تردد راديوي ليس لها أي تأثير على البروتونات الحرة، حيث تؤدي هذه الاستثارة لزيادة تباين الصورة عن طريق نقل المغزل المُشبع مغناطيسيا من المساحة المقترنة إلى المساحة الحرة، مما يقلل من إشارة الماء الحر، ويزود هذا النقل المغناطيسي المتجانس النوي طريقة غير مباشرة لقياس الجزيئات الضخمة في الأنسجة، كما يتضمن هذا النقل المغناطيسي المتجانس النوي اختيار إزاحة التردد المناسب وشكل النبضة لتشبع المغزل المقترن بقدر كاف، ضمن حدود السلامةلمعدل الامتصاص المحدد للتصوير بالرنين المغناطيسي.[51]
^Graham D, Cloke P, Vosper M (2011-05-31). Principles and Applications of Radiological Physics E-Book (6 ed.). Elsevier Health Sciences. p. 292. ISBN978-0-7020-4614-8.}
^Berger F, de Jonge M, Smithuis R, Maas M. "Stress fractures". Radiology Assistant. Radiology Society of the Netherlands. Retrieved 2017-10-13. نسخة محفوظة 29 سبتمبر 2019 على موقع واي باك مشين.
^Chua TC, Wen W, Slavin MJ, Sachdev PS (February 2008). "Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review". Current Opinion in Neurology. 21 (1): 83–92. doi:10.1097/WCO.0b013e3282f4594b. PMID18180656. نسخة محفوظة 29 أغسطس 2020 على موقع واي باك مشين.
^"How we perform myocardial perfusion with cardiovascular magnetic resonance". Journal of Cardiovascular Magnetic Resonance. ج. 9 ع. 3: 539–47. 2007. DOI:10.1080/10976640600897286. PMID:17365233.
^"MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences". AJNR. American Journal of Neuroradiology. ج. 13 ع. 6: 1555–64. 1992. PMID:1332459.
^"Diffusion Inaging". Stanford University. مؤرشف من الأصل في 2011-12-24. اطلع عليه بتاريخ 2012-04-28.
^"The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI". Nature Precedings. 2009. DOI:10.1038/npre.2009.3267.5.
^
"Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy". Magnetic Resonance in Medicine. ج. 14 ع. 2: 330–46. مايو 1990. DOI:10.1002/mrm.1910140218. PMID:2345513.
^"What does fMRI tell us about neuronal activity?". Nature Reviews. Neuroscience. ج. 3 ع. 2: 142–51. فبراير 2002. DOI:10.1038/nrn730. PMID:11836522.
^"Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies". Neurosurgery. ج. 66 ع. 1: 113–20. يناير 2010. DOI:10.1227/01.NEU.0000360392.15450.C9. PMID:19935438.
^"Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field". Biochimica et Biophysica Acta (BBA) - General Subjects. ج. 714 ع. 2: 265–70. فبراير 1982. DOI:10.1016/0304-4165(82)90333-6. PMID:6275909.