Sebuah sinar yang melalui grafik hiperbola satuan
x
2
−
y
2
=
1
{\displaystyle x^{2}\ -\ y^{2}\ =\ 1}
di titik
(
cosh
a
,
sinh
a
)
{\displaystyle (\cosh \,a,\,\sinh \,a)}
, dengan
a
{\displaystyle a}
bernilai dua kali lipat dari luas di antara sinar dengan grafik hiperbola dan sumbu-
x
{\displaystyle x}
.
Fungsi hiperbolik invers
Dalam matematika , fungsi hiperbolik invers merupakan fungsi invers dari fungsi hiperbolik .
Notasi
Asal-usul prefiks ar- berasal dari singkatan dari notasi fungsi hiperbolik yang serupa (seperti, arsinh dan arcosh) berdasarkan ISO 80000-2 . Prefiks arc- yang berasal dari fungsi hiperbolik yang serupa (seperti, arcsinh dan arccosh) juga seringkali dipakai berdasarkan penamaan fungsi invers trigonometri . Namun sayangnya, pemakaian kedua prefiks tersebut keliru sebab prefiks arc merupakan singkatan dari arcus , sedangkan prefiks ar merupakan singkatan dari area (bahasa Indonesia : luas, daerah ). Karena itu, fungsi hiperbolik secara tidak langsung dikaitkan dengan busur.[ 1] [ 2] [ 3]
Notasi seperti sinh−1 (x ) , cosh−1 (x ) , dst. juga dipakai sebagai penggantinya.[ 4] [ 5] [ 6] [ 7] Namun sayangnya, superskrip −1 membingungkan para pembaca karena dapat diartikan sebagai perpangkatan atau fungsi invers (sebagai contoh, bandingkan cosh−1 (x ) dengan cosh(x )−1 ).
Definisi fungsi invers hiperbolik dalam logaritma
Karena fungsi hiperbolik merupakan fungsi rasional dari e x , dengan derajat pada pembilang maupun penyebut setidaknya bernilai dua, fungsi-fungsi tersebut dapat diselesaikan dalam bentuk e x dengan menggunakan rumus kuadratik . Maka, dengan mengambil logaritma alami akan memberikan ekspresi berikut untuk fungsi hiperbolik invers.
Nama fungsi invers hiperbolik
Definisi fungsi invers hiperbolik dalam
Domain
Fungsi sinus hiperbolik invers :
arsinh
x
=
ln
(
x
+
x
2
+
1
)
{\displaystyle \operatorname {arsinh} x=\ln \left(x+{\sqrt {x^{2}+1}}\right)}
Di seluruh garis bilangan real
Fungsi kosinus hiperbolik invers
arcosh
x
=
ln
(
x
+
x
2
−
1
)
{\displaystyle \operatorname {arcosh} x=\ln \left(x+{\sqrt {x^{2}-1}}\right)}
Di interval tertutup [1, +∞ )
Fungsi tangen hiperbolik invers
artanh
x
=
1
2
ln
(
1
+
x
1
−
x
)
{\displaystyle \operatorname {artanh} x={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)}
Di interval terbuka (−1, 1)
Fungsi kotangen hiperbolik invers
arcoth
x
=
1
2
ln
(
x
+
1
x
−
1
)
{\displaystyle \operatorname {arcoth} x={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)}
Di gabungan dari interval terbuka (−∞, −1) dan (1, +∞)
Fungsi sekan hiperbolik invers
arsech
x
=
ln
(
1
x
+
1
x
2
−
1
)
=
ln
(
1
+
1
−
x
2
x
)
{\displaystyle \operatorname {arsech} x=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}-1}}\right)=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)}
Di interval semi- terbuka (0, 1]
Fungsi kosekan hiperbolik invers
arcsch
x
=
ln
(
1
x
+
1
x
2
+
1
)
{\displaystyle \operatorname {arcsch} x=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}+1}}\right)}
Di garis bilangan real, tetapi tidak memuat 0.
Rumus penambahan
arsinh
u
±
arsinh
v
=
arsinh
(
u
1
+
v
2
±
v
1
+
u
2
)
{\displaystyle \operatorname {arsinh} u\pm \operatorname {arsinh} v=\operatorname {arsinh} \left(u{\sqrt {1+v^{2}}}\pm v{\sqrt {1+u^{2}}}\right)}
arcosh
u
±
arcosh
v
=
arcosh
(
u
v
±
(
u
2
−
1
)
(
v
2
−
1
)
)
{\displaystyle \operatorname {arcosh} u\pm \operatorname {arcosh} v=\operatorname {arcosh} \left(uv\pm {\sqrt {(u^{2}-1)(v^{2}-1)}}\right)}
artanh
u
±
artanh
v
=
artanh
(
u
±
v
1
±
u
v
)
{\displaystyle \operatorname {artanh} u\pm \operatorname {artanh} v=\operatorname {artanh} \left({\frac {u\pm v}{1\pm uv}}\right)}
arcoth
u
±
arcoth
v
=
arcoth
(
1
±
u
v
u
±
v
)
{\displaystyle \operatorname {arcoth} u\pm \operatorname {arcoth} v=\operatorname {arcoth} \left({\frac {1\pm uv}{u\pm v}}\right)}
arsinh
u
+
arcosh
v
=
arsinh
(
u
v
+
(
1
+
u
2
)
(
v
2
−
1
)
)
=
arcosh
(
v
1
+
u
2
+
u
v
2
−
1
)
{\displaystyle {\begin{aligned}\operatorname {arsinh} u+\operatorname {arcosh} v&=\operatorname {arsinh} \left(uv+{\sqrt {(1+u^{2})(v^{2}-1)}}\right)\\&=\operatorname {arcosh} \left(v{\sqrt {1+u^{2}}}+u{\sqrt {v^{2}-1}}\right)\end{aligned}}}
Identitas lainnya
2
arcosh
x
=
arcosh
(
2
x
2
−
1
)
for
x
≥
1
4
arcosh
x
=
arcosh
(
8
x
4
−
8
x
2
+
1
)
for
x
≥
1
2
arsinh
x
=
arcosh
(
2
x
2
+
1
)
for
x
≥
0
4
arsinh
x
=
arcosh
(
8
x
4
+
8
x
2
+
1
)
for
x
≥
0
{\displaystyle {\begin{aligned}2\operatorname {arcosh} x&=\operatorname {arcosh} (2x^{2}-1)&\quad {\hbox{ for }}x\geq 1\\4\operatorname {arcosh} x&=\operatorname {arcosh} (8x^{4}-8x^{2}+1)&\quad {\hbox{ for }}x\geq 1\\2\operatorname {arsinh} x&=\operatorname {arcosh} (2x^{2}+1)&\quad {\hbox{ for }}x\geq 0\\4\operatorname {arsinh} x&=\operatorname {arcosh} (8x^{4}+8x^{2}+1)&\quad {\hbox{ for }}x\geq 0\end{aligned}}}
ln
(
x
)
=
arcosh
(
x
2
+
1
2
x
)
=
arsinh
(
x
2
−
1
2
x
)
=
artanh
(
x
2
−
1
x
2
+
1
)
{\displaystyle \ln(x)=\operatorname {arcosh} \left({\frac {x^{2}+1}{2x}}\right)=\operatorname {arsinh} \left({\frac {x^{2}-1}{2x}}\right)=\operatorname {artanh} \left({\frac {x^{2}-1}{x^{2}+1}}\right)}
Komposisi dari fungsi hiperbolik dan fungsi hiperbolik invers
sinh
(
arcosh
x
)
=
x
2
−
1
untuk
|
x
|
>
1
sinh
(
artanh
x
)
=
x
1
−
x
2
untuk
−
1
<
x
<
1
cosh
(
arsinh
x
)
=
1
+
x
2
cosh
(
artanh
x
)
=
1
1
−
x
2
untuk
−
1
<
x
<
1
tanh
(
arsinh
x
)
=
x
1
+
x
2
tanh
(
arcosh
x
)
=
x
2
−
1
x
untuk
|
x
|
>
1
{\displaystyle {\begin{aligned}&\sinh(\operatorname {arcosh} x)={\sqrt {x^{2}-1}}\quad {\text{untuk}}\quad |x|>1\\&\sinh(\operatorname {artanh} x)={\frac {x}{\sqrt {1-x^{2}}}}\quad {\text{untuk}}\quad -1<x<1\\&\cosh(\operatorname {arsinh} x)={\sqrt {1+x^{2}}}\\&\cosh(\operatorname {artanh} x)={\frac {1}{\sqrt {1-x^{2}}}}\quad {\text{untuk}}\quad -1<x<1\\&\tanh(\operatorname {arsinh} x)={\frac {x}{\sqrt {1+x^{2}}}}\\&\tanh(\operatorname {arcosh} x)={\frac {\sqrt {x^{2}-1}}{x}}\quad {\text{untuk}}\quad |x|>1\end{aligned}}}
Komposisi dari fungsi invers hiperbolik dan fungsi trigonometri
arsinh
(
tan
α
)
=
artanh
(
sin
α
)
=
ln
(
1
+
sin
α
cos
α
)
=
±
arcosh
(
1
cos
α
)
{\displaystyle \operatorname {arsinh} \left(\tan \alpha \right)=\operatorname {artanh} \left(\sin \alpha \right)=\ln \left({\frac {1+\sin \alpha }{\cos \alpha }}\right)=\pm \operatorname {arcosh} \left({\frac {1}{\cos \alpha }}\right)}
ln
(
|
tan
α
|
)
=
−
artanh
(
cos
2
α
)
{\displaystyle \ln \left(\left|\tan \alpha \right|\right)=-\operatorname {artanh} \left(\cos 2\alpha \right)}
[ 8]
Konversi
ln
x
=
artanh
(
x
2
−
1
x
2
+
1
)
=
arsinh
(
x
2
−
1
2
x
)
=
±
arcosh
(
x
2
+
1
2
x
)
{\displaystyle \ln x=\operatorname {artanh} \left({\frac {x^{2}-1}{x^{2}+1}}\right)=\operatorname {arsinh} \left({\frac {x^{2}-1}{2x}}\right)=\pm \operatorname {arcosh} \left({\frac {x^{2}+1}{2x}}\right)}
artanh
x
=
arsinh
(
x
1
−
x
2
)
=
±
arcosh
(
1
1
−
x
2
)
{\displaystyle \operatorname {artanh} x=\operatorname {arsinh} \left({\frac {x}{\sqrt {1-x^{2}}}}\right)=\pm \operatorname {arcosh} \left({\frac {1}{\sqrt {1-x^{2}}}}\right)}
arsinh
x
=
artanh
(
x
1
+
x
2
)
=
±
arcosh
(
1
+
x
2
)
{\displaystyle \operatorname {arsinh} x=\operatorname {artanh} \left({\frac {x}{\sqrt {1+x^{2}}}}\right)=\pm \operatorname {arcosh} \left({\sqrt {1+x^{2}}}\right)}
arcosh
x
=
|
arsinh
(
x
2
−
1
)
|
=
|
artanh
(
x
2
−
1
x
)
|
{\displaystyle \operatorname {arcosh} x=\left|\operatorname {arsinh} \left({\sqrt {x^{2}-1}}\right)\right|=\left|\operatorname {artanh} \left({\frac {\sqrt {x^{2}-1}}{x}}\right)\right|}
Turunan
d
d
x
arsinh
x
=
1
x
2
+
1
,
untuk semua bilangan real
x
d
d
x
arcosh
x
=
1
x
2
−
1
,
untuk semua bilangan real
x
>
1
d
d
x
artanh
x
=
1
1
−
x
2
,
untuk semua bilangan real
|
x
|
<
1
d
d
x
arcoth
x
=
1
1
−
x
2
,
untuk semua bilangan real
|
x
|
>
1
d
d
x
arsech
x
=
−
1
x
1
−
x
2
,
untuk semua bilangan real
x
∈
(
0
,
1
)
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
,
untuk semua bilangan real
x
, kecuali
0
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} x&{}={\frac {1}{\sqrt {x^{2}+1}}},{\text{ untuk semua bilangan real }}x\\{\frac {d}{dx}}\operatorname {arcosh} x&{}={\frac {1}{\sqrt {x^{2}-1}}},{\text{ untuk semua bilangan real }}x>1\\{\frac {d}{dx}}\operatorname {artanh} x&{}={\frac {1}{1-x^{2}}},{\text{ untuk semua bilangan real }}|x|<1\\{\frac {d}{dx}}\operatorname {arcoth} x&{}={\frac {1}{1-x^{2}}},{\text{ untuk semua bilangan real }}|x|>1\\{\frac {d}{dx}}\operatorname {arsech} x&{}={\frac {-1}{x{\sqrt {1-x^{2}}}}},{\text{ untuk semua bilangan real }}x\in (0,1)\\{\frac {d}{dx}}\operatorname {arcsch} x&{}={\frac {-1}{|x|{\sqrt {1+x^{2}}}}},{\text{ untuk semua bilangan real }}x{\text{, kecuali }}0\\\end{aligned}}}
Sebagai contoh, misalkan
θ
=
arsinh
x
{\displaystyle \theta =\operatorname {arsinh} x}
, maka
d
arsinh
x
d
x
=
d
θ
d
sinh
θ
=
1
cosh
θ
=
1
1
+
sinh
2
θ
=
1
1
+
x
2
.
{\displaystyle {\frac {d\,\operatorname {arsinh} x}{dx}}={\frac {d\theta }{d\sinh \theta }}={\frac {1}{\cosh \theta }}={\frac {1}{\sqrt {1+\sinh ^{2}\theta }}}={\frac {1}{\sqrt {1+x^{2}}}}.}
dengan
sinh
2
θ
=
(
sinh
θ
)
2
{\displaystyle \sinh ^{2}\theta =(\sinh \theta )^{2}}
.
Ekspansi deret
Ekspansi deret dapat diperoleh untuk fungsi-fungsi di atas:
arsinh
x
=
x
−
(
1
2
)
x
3
3
+
(
1
⋅
3
2
⋅
4
)
x
5
5
−
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
x
7
7
±
⋯
=
∑
n
=
0
∞
(
(
−
1
)
n
(
2
n
)
!
2
2
n
(
n
!
)
2
)
x
2
n
+
1
2
n
+
1
,
|
x
|
<
1
{\displaystyle {\begin{aligned}\operatorname {arsinh} x&=x-\left({\frac {1}{2}}\right){\frac {x^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{5}}{5}}-\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{7}}{7}}\pm \cdots \\&=\sum _{n=0}^{\infty }\left({\frac {(-1)^{n}(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{2n+1}}{2n+1}},\qquad \left|x\right|<1\end{aligned}}}
arcosh
x
=
ln
(
2
x
)
−
(
(
1
2
)
x
−
2
2
+
(
1
⋅
3
2
⋅
4
)
x
−
4
4
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
x
−
6
6
+
⋯
)
=
ln
(
2
x
)
−
∑
n
=
1
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
x
−
2
n
2
n
,
|
x
|
>
1
{\displaystyle {\begin{aligned}\operatorname {arcosh} x&=\ln(2x)-\left(\left({\frac {1}{2}}\right){\frac {x^{-2}}{2}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{-4}}{4}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{-6}}{6}}+\cdots \right)\\&=\ln(2x)-\sum _{n=1}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{-2n}}{2n}},\qquad \left|x\right|>1\end{aligned}}}
artanh
x
=
x
+
x
3
3
+
x
5
5
+
x
7
7
+
⋯
=
∑
n
=
0
∞
x
2
n
+
1
2
n
+
1
,
|
x
|
<
1
{\displaystyle {\begin{aligned}\operatorname {artanh} x&=x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+{\frac {x^{7}}{7}}+\cdots \\&=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{2n+1}},\qquad \left|x\right|<1\end{aligned}}}
arcsch
x
=
arsinh
1
x
=
x
−
1
−
(
1
2
)
x
−
3
3
+
(
1
⋅
3
2
⋅
4
)
x
−
5
5
−
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
x
−
7
7
±
⋯
=
∑
n
=
0
∞
(
(
−
1
)
n
(
2
n
)
!
2
2
n
(
n
!
)
2
)
x
−
(
2
n
+
1
)
2
n
+
1
,
|
x
|
>
1
{\displaystyle {\begin{aligned}\operatorname {arcsch} x=\operatorname {arsinh} {\frac {1}{x}}&=x^{-1}-\left({\frac {1}{2}}\right){\frac {x^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{-5}}{5}}-\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{-7}}{7}}\pm \cdots \\&=\sum _{n=0}^{\infty }\left({\frac {(-1)^{n}(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{-(2n+1)}}{2n+1}},\qquad \left|x\right|>1\end{aligned}}}
arsech
x
=
arcosh
1
x
=
ln
2
x
−
(
(
1
2
)
x
2
2
+
(
1
⋅
3
2
⋅
4
)
x
4
4
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
x
6
6
+
⋯
)
=
ln
2
x
−
∑
n
=
1
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
x
2
n
2
n
,
0
<
x
≤
1
{\displaystyle {\begin{aligned}\operatorname {arsech} x=\operatorname {arcosh} {\frac {1}{x}}&=\ln {\frac {2}{x}}-\left(\left({\frac {1}{2}}\right){\frac {x^{2}}{2}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{4}}{4}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{6}}{6}}+\cdots \right)\\&=\ln {\frac {2}{x}}-\sum _{n=1}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{2n}}{2n}},\qquad 0<x\leq 1\end{aligned}}}
arcoth
x
=
artanh
1
x
=
x
−
1
+
x
−
3
3
+
x
−
5
5
+
x
−
7
7
+
⋯
=
∑
n
=
0
∞
x
−
(
2
n
+
1
)
2
n
+
1
,
|
x
|
>
1
{\displaystyle {\begin{aligned}\operatorname {arcoth} x=\operatorname {artanh} {\frac {1}{x}}&=x^{-1}+{\frac {x^{-3}}{3}}+{\frac {x^{-5}}{5}}+{\frac {x^{-7}}{7}}+\cdots \\&=\sum _{n=0}^{\infty }{\frac {x^{-(2n+1)}}{2n+1}},\qquad \left|x\right|>1\end{aligned}}}
Ekspansi asimtotik untuk fungsi
arsinh
x
{\displaystyle \operatorname {arsinh} x}
dinyatakan dengan
arsinh
x
=
ln
(
2
x
)
+
∑
n
=
1
∞
(
−
1
)
n
−
1
(
2
n
−
1
)
!
!
2
n
(
2
n
)
!
!
1
x
2
n
{\displaystyle \operatorname {arsinh} x=\ln(2x)+\sum \limits _{n=1}^{\infty }{\left({-1}\right)^{n-1}{\frac {\left({2n-1}\right)!!}{2n\left({2n}\right)!!}}}{\frac {1}{x^{2n}}}}
Referensi
^ Menurut Jan Gullberg , Mathematics: From the Birth of Numbers (New York: W. W. Norton & Company , 1997), ISBN 0-393-04002-X , hlm. 539:Another form of notation, arcsinh x , arccosh x , etc., is a practice to be condemned as these functions have nothing whatever to do with arc , but with ar ea, as is demonstrated by their full Latin names,
arsinh area sinus hyperbolicus
arcosh area cosinus hyperbolicus, etc.
Terjemahan:Bentuk notasi yang lain, seperti fungsi arcsinh x , arccosh x , dsb., sebaiknya dihindari. Sebab fungsi-fungsi tersebut tidak mempunyai kaitan dengan [awalan] arc , melainkan ar ea (bahasa Indonesia : luas ), seperti yang ditunjukkan berdasarkan nama panjang dalam bahasa Latin, seperti arsinh (area sinus hyperbolicus ), arcosh (area cosinus hyperbolicus ), dsb.
^ Menurut Eberhard Zeidler , Wolfgang Hackbusch dan Hans Rudolf Schwarz (diterjemahkan oleh Bruce Hunt, ke Oxford Users' Guide to Mathematics (Oxford: Oxford University Press , 2004), ISBN 0-19-850763-1 , Section 0.2.13: "The inverse hyperbolic functions", hlm. 68:"The Latin names for the inverse hyperbolic functions are area sinus hyperbolicus, area cosinus hyperbolicus, area tangens hyperbolicus and area cotangens hyperbolicus (of x ). ..." This aforesaid reference uses the notations arsinh, arcosh, artanh, and arcoth for the respective inverse hyperbolic functions.
Terjemahan:"Nama-nama untuk fungsi hiperbolik invers, dalam bahasa Latin, adalah area sinus hyperbolicus , area cosinus hyperbolicus , area tangens hyperbolicus , dan area kontangen hyperbolicus (dari x ). ...". Sumber yang telah disebutkan memakai notasi arsinh, arcosh, artanh, dan arcoth untuk masing-masing fungsi hiperbolik invers.
^ Menurut Ilja N. Bronshtein , Konstantin A. Semendyayev , Gerhard Musiol dan Heiner Mühlig, Handbook of Mathematics (Berlin: Springer-Verlag , 5th ed., 2007), ISBN 3-540-72121-5 , DOI :10.1007/978-3-540-72122-2 , Section 2.10: "Area Functions", hlm. 91:The area functions are the inverse functions of the hyperbolic functions, i.e., the inverse hyperbolic functions . The functions sinh x , tanh x , and coth x are strictly monotone, so they have unique inverses without any restriction; the function cosh x has two monotonic intervals so we can consider two inverse functions. The name area refers to the fact that the geometric definition of the functions is the area of certain hyperbolic sectors ...
Terjemahan:Area functions (bahasa Indonesia : fungsi luas ) merupakan fungsi invers dari fungsi hiperbolik, atau disebut sebagai fungsi hiperbolik invers . Fungsi-fungsi tersebut seperti sinh x , tanh x , dan coth x merupakan [fungsi yang] monoton dengan sempurna, yang membuat fungsi tersebut hanya mempunyai satu buah fungsi invers tanpa adanya batasan. Di sisi lain, fungsi cosh x mempunyai dua interval monotonik, dan begitupula kita dapat menganggap kedua fungsi invers [yang lain]. Nama area (bahasa Indonesia : luas ) mengacu pada fakta bahwa definisi geometri dari fungsi merupakan luas dari daerah-daerah hiperbolik tertentu ...
^ Weisstein, Eric W. "Inverse Hyperbolic Functions" . mathworld.wolfram.com (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal 2023-06-23. Diakses tanggal 2020-08-30 .
^ "Inverse hyperbolic functions - Encyclopedia of Mathematics" . encyclopediaofmath.org . Diarsipkan dari versi asli tanggal 2023-07-11. Diakses tanggal 2020-08-30 .
^ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (1992). "Section 5.6. Quadratic and Cubic Equations". Numerical Recipes in FORTRAN: The Art of Scientific Computing (edisi ke-2nd). New York: Cambridge University Press. ISBN 0-521-43064-X .
^ Woodhouse, N. M. J. (2003), Special Relativity , London: Springer, hlm. 71, ISBN 1-85233-426-6
^ "Identities with inverse hyperbolic and trigonometric functions" . math stackexchange . stackexchange . Diarsipkan dari versi asli tanggal 2023-07-26. Diakses tanggal 3 November 2016 .
Bibilografi
Herbert Busemann and Paul J. Kelly (1953) Projective Geometry and Projective Metrics , page 207, Academic Press .
Pranala luar