Minigo
Minigo是一套電腦圍棋軟體。 簡介Minigo是一套依照DeepMind在《自然》上對於AlphaGo Zero所發表的論文《Mastering the game of Go without human knowledge[3]》所實做出的開源電腦圍棋程式[4],也就是不使用人類棋譜與累積的圍棋知識,僅實做圍棋規則,使用單一類神經網路從自我對弈中學習(不像AlphaGo以人類角度思考,設計了Policy Network與Value Network)。 軟體是基於Brain Lee的MuGo繼續開發[4],使用Python與C++撰寫[4],並且透過TensorFlow實做類神經網路的部份[4]。程式碼以Apache License 2.0釋出[2],訓練資料以公有领域(Public domain)釋出[5]。 專案的目標包括了[4]:
除此之外,專案也希望藉由獨立另外實做,驗證Leela Zero所產生的疑問[6]。 與Google及DeepMind的關聯這個計畫雖然是掛在TensorFlow的GitHub下(且TensowFlow是由Google研發出的軟體),而且主要的專案貢獻者Andrew Jackson[7][註 1]與Tom Madams[註 2]都是Google員工[6],但官方一再強調這並非TensorFlow專案的一環[6],也不是DeepMind的AlphaGo官方版本[4],而是由獨立的團隊依照AlphaGo Zero的論文而實做出的版本[4][8]。 版本演進雖然Google與DeepMind沒有正式參與Minigo計畫,但Andrew Jackson使用的是Google所提供的20%時間[6],並且得到Google贊助提供硬體資源進行運算,供Minigo團隊確認程式正確性[4][9]:
合作Leela Zero同樣也是依照AlphaGo Zero論文所獨立實做出來的軟體[10],而Minigo專案取得Google贊助的計算資源,透過大量計算資源得到品質還不錯的訓練網路資料。因此Leela Zero的團隊與Minigo的團隊基於雙方的經驗,討論參數的調整能帶來的改善,以及雙方訓練資料共用的可能性[11]。 成績Minigo的第二階段在CGOS上以 相關連結
參考資料
註解外部連結
|