逐次超松弛迭代法数值线性代数中,逐次超松弛(successive over-relaxation,SOR)迭代法是高斯-赛德尔迭代的一种变体,用于求解线性方程组。类似方法也可用于任何缓慢收敛的迭代过程。 SOR迭代法由David M. Young Jr.和Stanley P. Frankel在1950年同时独立提出,目的是在计算机上自动求解线性方程组。之前,人们已经为计算员的计算开发过超松弛法,如路易斯·弗莱·理查德森的方法以及R. V. Southwell开发的方法。但这些方法需要一定专业知识确保求解的收敛,不适用于计算机编程。David M. Young Jr.的论文对这些方面进行了探讨。[1] 形式化给定n个线性方程组成的方系统: 其中 则A可分解为对角矩阵D、严格上下三角矩阵U、L: 其中 线性方程组可重写为 其中是常数,称作松弛因子(relaxation factor)。 逐次超松弛迭代法可以通过迭代逼近x的精确解,可分析地写作 其中是的第k次迭代值,是下一次迭代所得的值。 利用的三角形,可用向前替换法依次计算的元素: 收敛性松弛因子的选择并不容易,取决于系数矩阵的性质。1947年,亚历山大·马雅科维奇·奥斯特洛夫斯基证明,若A是对称正定矩阵,则。因此,迭代过程将收敛,但更高的收敛速度更有价值。 收敛速度则收敛速度可表为 最优松弛因子是 特别地,时SOR法即退化为高斯-赛德尔迭代,有。 对最优的,有,表明SOR法的效率约是高斯-赛德尔迭代的4倍。 最后一条假设对三对角矩阵也满足,因为对对角阵Z,其元素、。 算法由于此算法中,元素可在迭代过程中被覆盖,所以只需一个存储向量,不需要向量索引。 输入:A, b, ω 输出:φ 选择初始解φ repeat until convergence for i from 1 until n do set σ to 0 for j from 1 until n do if j ≠ i then set σ to σ + aij φj end if end (j-loop) set φi to (1 − ω)φi + ω(bi − σ) / aii end (i-loop) check if convergence is reached end (repeat)
例子解线性方程组 择松弛因子与初始解。由SOR算法可得下表,在38步取得精确解(3, −2, 2, 1)。
用Common Lisp的简单实现: ;; 默认浮点格式设为long-float,以确保在更大范围数字上正确运行
(setf *read-default-float-format* 'long-float)
(defparameter +MAXIMUM-NUMBER-OF-ITERATIONS+ 100
"The number of iterations beyond which the algorithm should cease its
operation, regardless of its current solution. A higher number of
iterations might provide a more accurate result, but imposes higher
performance requirements.")
(declaim (type (integer 0 *) +MAXIMUM-NUMBER-OF-ITERATIONS+))
(defun get-errors (computed-solution exact-solution)
"For each component of the COMPUTED-SOLUTION vector, retrieves its
error with respect to the expected EXACT-SOLUTION vector, returning a
vector of error values.
---
While both input vectors should be equal in size, this condition is
not checked and the shortest of the twain determines the output
vector's number of elements.
---
The established formula is the following:
Let resultVectorSize = min(computedSolution.length, exactSolution.length)
Let resultVector = new vector of resultVectorSize
For i from 0 to (resultVectorSize - 1)
resultVector[i] = exactSolution[i] - computedSolution[i]
Return resultVector"
(declare (type (vector number *) computed-solution))
(declare (type (vector number *) exact-solution))
(map '(vector number *) #'- exact-solution computed-solution))
(defun is-convergent (errors &key (error-tolerance 0.001))
"Checks whether the convergence is reached with respect to the
ERRORS vector which registers the discrepancy betwixt the computed
and the exact solution vector.
---
The convergence is fulfilled if and only if each absolute error
component is less than or equal to the ERROR-TOLERANCE, that is:
For all e in ERRORS, it holds: abs(e) <= errorTolerance."
(declare (type (vector number *) errors))
(declare (type number error-tolerance))
(flet ((error-is-acceptable (error)
(declare (type number error))
(<= (abs error) error-tolerance)))
(every #'error-is-acceptable errors)))
(defun make-zero-vector (size)
"Creates and returns a vector of the SIZE with all elements set to 0."
(declare (type (integer 0 *) size))
(make-array size :initial-element 0.0 :element-type 'number))
(defun successive-over-relaxation (A b omega
&key (phi (make-zero-vector (length b)))
(convergence-check
#'(lambda (iteration phi)
(declare (ignore phi))
(>= iteration +MAXIMUM-NUMBER-OF-ITERATIONS+))))
"Implements the successive over-relaxation (SOR) method, applied upon
the linear equations defined by the matrix A and the right-hand side
vector B, employing the relaxation factor OMEGA, returning the
calculated solution vector.
---
The first algorithm step, the choice of an initial guess PHI, is
represented by the optional keyword parameter PHI, which defaults
to a zero-vector of the same structure as B. If supplied, this
vector will be destructively modified. In any case, the PHI vector
constitutes the function's result value.
---
The terminating condition is implemented by the CONVERGENCE-CHECK,
an optional predicate
lambda(iteration phi) => generalized-boolean
which returns T, signifying the immediate termination, upon achieving
convergence, or NIL, signaling continuant operation, otherwise. In
its default configuration, the CONVERGENCE-CHECK simply abides the
iteration's ascension to the ``+MAXIMUM-NUMBER-OF-ITERATIONS+'',
ignoring the achieved accuracy of the vector PHI."
(declare (type (array number (* *)) A))
(declare (type (vector number *) b))
(declare (type number omega))
(declare (type (vector number *) phi))
(declare (type (function ((integer 1 *)
(vector number *))
*)
convergence-check))
(let ((n (array-dimension A 0)))
(declare (type (integer 0 *) n))
(loop for iteration from 1 by 1 do
(loop for i from 0 below n by 1 do
(let ((rho 0))
(declare (type number rho))
(loop for j from 0 below n by 1 do
(when (/= j i)
(let ((a[ij] (aref A i j))
(phi[j] (aref phi j)))
(incf rho (* a[ij] phi[j])))))
(setf (aref phi i)
(+ (* (- 1 omega)
(aref phi i))
(* (/ omega (aref A i i))
(- (aref b i) rho))))))
(format T "~&~d. solution = ~a" iteration phi)
;; Check if convergence is reached.
(when (funcall convergence-check iteration phi)
(return))))
(the (vector number *) phi))
;; Summon the function with the exemplary parameters.
(let ((A (make-array (list 4 4)
:initial-contents
'(( 4 -1 -6 0 )
( -5 -4 10 8 )
( 0 9 4 -2 )
( 1 0 -7 5 ))))
(b (vector 2 21 -12 -6))
(omega 0.5)
(exact-solution (vector 3 -2 2 1)))
(successive-over-relaxation
A b omega
:convergence-check
#'(lambda (iteration phi)
(declare (type (integer 0 *) iteration))
(declare (type (vector number *) phi))
(let ((errors (get-errors phi exact-solution)))
(declare (type (vector number *) errors))
(format T "~&~d. errors = ~a" iteration errors)
(or (is-convergent errors :error-tolerance 0.0)
(>= iteration +MAXIMUM-NUMBER-OF-ITERATIONS+))))))
上述伪代码的简单Python实现。 import numpy as np
from scipy import linalg
def sor_solver(A, b, omega, initial_guess, convergence_criteria):
"""
This is an implementation of the pseudo-code provided in the Wikipedia article.
Arguments:
A: nxn numpy matrix.
b: n dimensional numpy vector.
omega: relaxation factor.
initial_guess: An initial solution guess for the solver to start with.
convergence_criteria: The maximum discrepancy acceptable to regard the current solution as fitting.
Returns:
phi: solution vector of dimension n.
"""
step = 0
phi = initial_guess[:]
residual = linalg.norm(A @ phi - b) # Initial residual
while residual > convergence_criteria:
for i in range(A.shape[0]):
sigma = 0
for j in range(A.shape[1]):
if j != i:
sigma += A[i, j] * phi[j]
phi[i] = (1 - omega) * phi[i] + (omega / A[i, i]) * (b[i] - sigma)
residual = linalg.norm(A @ phi - b)
step += 1
print("Step {} Residual: {:10.6g}".format(step, residual))
return phi
# An example case that mirrors the one in the Wikipedia article
residual_convergence = 1e-8
omega = 0.5 # Relaxation factor
A = np.array([[4, -1, -6, 0],
[-5, -4, 10, 8],
[0, 9, 4, -2],
[1, 0, -7, 5]])
b = np.array([2, 21, -12, -6])
initial_guess = np.zeros(4)
phi = sor_solver(A, b, omega, initial_guess, residual_convergence)
print(phi)
对称逐次超松弛对对称矩阵A,其中 有对称逐次超松弛迭代法(SSOR): 迭代法为 SOR与SSOR法都来自David M. Young Jr. 其他应用任何迭代法都可应用相似技巧。若原迭代的形式为 则可将其改为 但若将x视作完整向量,则上述解线性方程组的公式不是这种公式的特例。此公式基础上,计算下一个向量的公式是 其中。用于加快收敛速度,可使发散的迭代收敛或加快过调(overshoot)过程的收敛。有多种方法可根据观察到的收敛过程行为,自适应地调整松弛因子。这些方法通常只对一部分问题有效。 另见注释
参考文献
外部链接
|