西姆松定理西姆松定理(或譯西摩松定理、西姆森定理)是幾何學中的一個定理,此定理描述:在平面中,給定一個三角形 ,以及 外接圓上的一點。則 分別對直線 、、 作的三個垂足(右圖中的 、、)會共線。 上述中的直線 稱為 關於 點的西姆松線(英語:Simson line),或譯西摩松線、西姆森線。 逆定理西姆松定理的逆敘述也是正確的,其描述:給定平面中的 及一點 。若 對 三邊延長線的三個垂足共線,則 在 的外接圓上。 相關性質
西姆松定理與西姆松的關係西姆松定理命名自蘇格蘭數學家 Robert Simson,然而西姆松是被誤認為定理的貢獻者[1],此定理實則由另一位蘇格蘭數學家威廉·華萊士所發表[2]。 证明如图,若L、M、N三点共线,连结BP,CP,则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和M、P、L、C分别四点共圆,有 角PBN = 角PLN = 角PLM = 角PCM 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则角PBN = 角PCM。因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和M、P、L、C四点共圆,有 角PLN = 角PBN = 角PCM = 角PLM 故L、M、N三点共线。 参见
外部連結參考資料
|