只要國際象棋盤上移除二個同色的方格,相同的方式可以證明,移除方格後的棋盤無法用2x1格骨牌填滿。不過若填除的是二個不同顏色的方格,一定可以用2x1格骨牌填滿,這個結果稱為高莫利定理(Gomory's theorem)[5],得名自數學家拉爾夫·愛德華·高莫利(英语:Ralph E. Gomory),他在1973年提出的證明[6]。高莫利定理可以用棋盤組成格子圖(英语:grid graph)的哈密顿图來證明,移去二個不同色的方格會將哈密顿图切成二部份,每個部份的黑色方格及白色方格都一樣多,兩部份都可以用2x1格骨牌填滿。
^Arthan, R. D., The Mutilated Chessboard Theorem in Z(PDF), 2005 [2007-05-06], (原始内容(PDF)存档于2017-12-14), The mutilated chessboard theorem was proposed over 40 years ago by John McCarthy as a "tough nut to crack" for automated reasoning.
^Alekhnovich, Michael, Mutilated chessboard problem is exponentially hard for resolution, Theoretical Computer Science, 2004, 310 (1-3): 513–525, doi:10.1016/S0304-3975(03)00395-5.
^Watkins, John J., Across the board: the mathematics of chessboard problems, Princeton University Press: 12–14, 2004, ISBN 978-0-691-11503-0.
^According to Mendelsohn, the original publication is in Honsberger's book. Mendelsohn, N. S., Tiling with dominoes, The College Mathematics Journal (Mathematical Association of America), 2004, 35 (2): 115–120, JSTOR 4146865, doi:10.2307/4146865; Honsberger, R., Mathematical Gems I, Mathematical Association of America, 1973.