數學的測度論中,拉東(Radon)測度,是在豪斯多夫空間上的博雷爾測度,且具有局部有限及內部正則性質。
定義
設m是豪斯多夫空間X的博雷爾集的σ-代數上的測度。m稱為
- 內部正則,若對任何博雷爾集B,其測度m(B)等於B的所有緊緻子集K的測度m(K)的最小上界;
- 外部正則,若對任何博雷爾集B,其測度m(B)等於所有包含B的開集U的測度m(U)的最大下界;
- 局部有限,若X中任一點都有鄰域U,使得m(U)為有限。
- 拉東測度,若m是內部正則及局部有限。
例子
以下不是拉東測度:
性質
對偶性
在一個局部緊豪斯多夫空間上,拉東測度對應到在緊支集連續函數空間上的正線性泛函。這個性質是提出拉東測度的定義的主要原因。
度量空間結構
在上的所有(正)拉東測度組成的帶點錐 ,可以用下述度量使成為完備度量空間。定義兩個測度間的拉東距離為
其中最小上界是對所有連續函數f: X → [-1, 1]取的。
這個度量有一些限制。例如上的概率測度
關於拉東度量不是序列緊緻,即是概率測度序列未必有收斂子序列。這個性質在一些應用中會造成困難。另一方面,若是緊緻度量空間,那麼
Wasserstein度量使成為緊緻度量空間。
在拉東度量收斂意味著測度的弱收斂:
但反之則不必然。在拉東度量收斂有時稱為強收斂,以便和弱收斂對比。
其他
外部連結