^A. Shomer. A pedagogical explanation for the non-renormalizability of gravity. 2007. arXiv:0709.3555.
延伸閱讀
N.D. Birrell & P.C.W. Davies. Quantum fields in curved space. CUP (1982).
S.A. Fulling. Aspects of quantum field theory in curved space-time. CUP (1989).
B.S. Kay & R.M. Wald. Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon. Physics Reports 207 (1991) 49-136
R.M. Wald. Quantum field theory in curved space-time and black hole thermodynamics. Chicago U. (1995).
S. Hollands, R.M. Wald. Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223 (2001) 289-326
R. Verch.A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun.Math.Phys. 223 (2001) 261-288
S. Hollands, R.M. Wald. On the renormalization group in curved space-time. Commun.Math.Phys. 237 (2003) 123-160
A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini. Analytic Aspects of Quantum Fields. World Scientific (2003)
V. Moretti. Comments on the stress-energy tensor operator in curved spacetime Commun. Math. Phys. 232, (2003) 189-222.
R. Brunetti, K. Fredenhagen, R.Verch. The Generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237 (2003) 31-68.
C. Dappiaggi, V. Moretti, N. Pinamonti. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, vol 2, (2011) 355-448