彎曲時空中的量子場論

粒子物理學中,彎曲時空的量子場論是指將平直時空量子場論推展到彎曲時空。此理論的一般性預測為:重力場或具有視界的非時變重力場皆可導致粒子創生

應用

此理論最著名的應用為霍金輻射,指出黑洞帶有黑體輻射。另一個相關的預測為盎魯效應,指出加速中的觀察者可以觀測到真空中出現粒子的熱浴,這在慣性觀察者是觀察不到的。

此外,宇宙暴脹造成的太初密度微擾也可以之計算,而實驗上也可透過天文學觀測(例如宇宙背景輻射)來驗證。

狄拉克方程式也可有彎曲時空中的形式,參見彎曲時空中的狄拉克方程

量子重力的近似

彎曲時空中的量子場論也可以視作量子重力的初階近似。更進一步的理論為半古典重力,其考慮了強重力場所造成的粒子創造;此理論仍屬古典理論,並且等效原理仍然適用。廣義相對論所描述的重力,其不可重整化特性是將重力量子化的主要障礙。[1]

相關條目

參考文獻

  1. ^ A. Shomer. A pedagogical explanation for the non-renormalizability of gravity. 2007. arXiv:0709.3555可免费查阅. 

延伸閱讀

  • N.D. Birrell & P.C.W. Davies. Quantum fields in curved space. CUP (1982).
  • S.A. Fulling. Aspects of quantum field theory in curved space-time. CUP (1989).
  • B.S. Kay & R.M. Wald. Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon. Physics Reports 207 (1991) 49-136
  • R.M. Wald. Quantum field theory in curved space-time and black hole thermodynamics. Chicago U. (1995).
  • L. H. Ford. Quantum Field Theory in Curved Spacetime页面存档备份,存于互联网档案馆) (1997).
  • S. Hollands, R.M. Wald. Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223 (2001) 289-326
  • R. Verch.A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun.Math.Phys. 223 (2001) 261-288
  • S. Hollands, R.M. Wald. On the renormalization group in curved space-time. Commun.Math.Phys. 237 (2003) 123-160
  • A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini. Analytic Aspects of Quantum Fields. World Scientific (2003)
  • V. Moretti. Comments on the stress-energy tensor operator in curved spacetime Commun. Math. Phys. 232, (2003) 189-222.
  • R. Brunetti, K. Fredenhagen, R.Verch. The Generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237 (2003) 31-68.
  • T. Jacobson Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect页面存档备份,存于互联网档案馆) (2004).
  • V. Mukhanov and S. Winitzki. Introduction to Quantum Effects in Gravity. CUP (2007).
  • L. Parker & D. Toms. Quantum Field Theory in Curved Spacetime. (2009).
  • T.-P. Hack. On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes (2010) Ph.D.Thesis Hamburg U. (Advisors: K. Fredenhagen, V. Moretti, R. M. Wald)
  • C. Dappiaggi, V. Moretti, N. Pinamonti. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, vol 2, (2011) 355-448