在点集拓扑学中,庫拉托夫斯基十四集問題敘述是:給定拓樸空間的子集,對做任意有限次數的取補集或閉包,最多可以得到幾個不同的集合?
本問題又被稱作閉包補集問題,由庫拉托夫斯基於1922年提出,並給出了解答 14[1] 。约翰·L·凯利撰寫的拓樸學經典教科書 General Topology 將庫拉托夫斯基十四集問題收錄做為一題習題[2],使得本問題在往後的 30 年間被許多人所熟知。
證明
對所有子集,將的補集記為,閉包記為,則有以下 3 件事實
- (取補集是對合的)
- (取閉包是冪等的)
- (或等價的,等價性來自 1.)
由 1. 和 2. 知,只需要考慮以下兩個序列就足夠了
- 及
再由 3. 知,最多只會有 14 個相異集合。
若對取補集或閉包可以產生恰好 14 個相異集合,則稱是個 14-集。事實上,實數空間 與一般實數上的拓樸,形成的拓樸空間就有包含 14-集,例如
其中 ( , ) 和 [ , ] 分別代表開區間和閉區間。
其他結果
1962 年 T.A. Chapman 發現,對做任意有限次數的取内部或閉包,則最多可以得到 7 幾個不同的集合。證明仍然化約到討論下面的兩個序列
- 及
其中,代表的內部。
代數結構
雖然問題是屬於點集拓樸學,但是出乎意料的,它的性質卻比較代數,而非拓樸。1960 年代,類似概念的問題不斷被提出,然而大部分卻已經跟拓樸本身不太有關係了[3]。
此外,取閉集或補集的運算定義了一個么半群,可以用來對不同拓樸空間做分類[4]。
參考資料
外部連結
|