大q-拉盖尔多项式是一个以基本超几何函数定义的正交多项式:
极限关系
- 大q雅可比多项式→大q拉盖尔多项式
令大q雅可比多项式中的,即得大q拉盖尔多项式
- 大q拉盖尔多项式→小q拉盖尔多项式
在大q拉盖尔多项式中,令,并令即得小q拉盖尔多项式
- 大→q拉盖尔多项式→阿尔-萨拉姆-卡里兹多项式 I
图集
|
|
|
|
|
|
参考文献
- Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719, doi:10.2277/0521833574
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, 2010, ISBN 978-3-642-05013-8, MR 2656096, doi:10.1007/978-3-642-05014-5
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., http://dlmf.nist.gov/18, Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248