Якобіан — визна́чник матриці Якобі.
При заміні змінних Якобіан визначається як
Якобіан використовується при зміні змінних при інтегруванні:
- .
Крім позначення літерою J використовується також позначення
- .
Якобіан має ряд властивостей, подібних до властивостей похідної. Зокрема
- .
- .
Приклад
У сферичній системі координат
Якобіан дорівнює
Тому
Див. також
Джерела
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2024. — 2403 с.(укр.)
- Herbert Federer: Geometric measure theory. 1. Auflage. Springer, Berlin 1996, ISBN 3-540-60656-4 (englisch). (Für die Definition)
- Wolfgang Nolting: Klassische Mechanik. In: Grundkurs theoretische Physik. 8. Auflage. Band 1. Springer, Berlin 2006, ISBN 978-3-540-34832-0.
- W. Tian, W. Gao, D. Zhang et. (2014) A general approach for error modeling of machine tools. International Journal of Machine Tools and Manufacture, 79, 17–23. (застосування якобіана для багатокоординатної обробки об'єктів)
|