Теорема Віталі (комплексний аналіз)

Теорема Віталі — твердження у комплексному аналізі про властивості рівномірно обмеженої послідовності голоморфних функцій. Теорема названа на честь італійського математика Джузеппе Віталі[1] [2].

Твердження теореми

Якщо послідовність функцій голоморфних в області є рівномірно обмежена на компактних підмножинах і для всіх що належить підмножині що має граничну точку всередині існує границя то є рівномірно збіжною на компактних підмножинах до функції що є голоморфною на

Зауваження. Аналог теореми для функцій багатьох змінних є невірним. Наприклад можна взяти за бікруг із змінними і розглянути послідовність функцій

Доведення

Припустимо, що послідовність не є збіжною в деякій точці Тоді з послідовності чисел можна виділити дві підпослідовності, що збігаються до різних чисел і Нехай відповідні підпослідовності функцій будуть і

Послідовності і є рівномірно обмеженими на компактних підмножинах і тому, згідно теореми Монтеля з них можна виділити нові підпослідовності і що рівномірно на компактних підмножинах збігаються до функцій і Згідно теореми Вейєрштраса ці функції є голоморфними на . Оскільки то також Але послідовності і як підпослідовності з збігаються на всіх точках до однакових границь, тож для всіх Але має граничну точку всередині і тому, згідно теореми про рівність Одержане протиріччя доводить, що послідовність є збіжною в усій області Рівномірна збіжність на компактних підмножинах випливає із теореми Монтеля.

Примітки

  1. Vitali, Giuseppe (1903), Sopra la serie di funzioni analitiche, Rend. Ist. Lombardo di Scie, et Lett. (Italian) , 36: 772—774
  2. Vitali, Giuseppe (1904), Sopra la serie di funzioni analitiche, Annali di Matematica Pura ed Applicata (Italian) , 10: 65—82

Посилання

Див. також

Література

  • Голузин Г. М. Геометрическая теория функций комплексного переменного, 2 изд. — М., 1966. — С. 56 — 60.