Метод невизначених коефіцієнтів (Розкладання на прості дроби) (англ. partial fraction decomposition) алгебраїчного дробу (такого дробу, що чисельник і знаменник обидва многочлени) — це операція, яка складається з вираження дробу як суми многочлена (можливо нуля) і одного або кількох дробів з простішими знаменниками.
Розкладання на прості дроби є досить важливим наприклад у інтегральному численні, оскільки цей алгоритм дає можливість обчислити первісну раціональної функції набагато простіше.
Розкладання на прості дроби можна використати, щоб привести раціональний дріб форми
де ƒ і g є многочленами, до виразу форми
де gj (x) це многочлени які є дільниками g(x), і зазвичай меншого степеню. Отже, розклад на прості дроби можна розглядати як процедуру обернену до простішої операції додавання алгебраїчних дробів, результатом якої є єдиний алгебраїчний дріб з чисельником і знаменником зазвичай вищого степеню. Повний розклад проводить перетворення так далеко як тільки можливо: інакше кажучи, g факторизується на стільки, на скільки це можливо. Отже, на виході повного розкладу на прості дроби ми маємо суму дробів, де:
Приклади
Приклад 1
Тут знаменник можна розкласти на два різні лінійні множники:
Отже, ми маємо такий розклад
Множення на x2 + 2x − 3 дає нам таке рівняння
Заміна x = −3 дає A = −1/4 і заміна x = 1 дає B = 1/4. Отже,
Приклад 2
Після ділення многочленів, ми маємо
Оскільки (−4)2 − 4×8 = −16 < 0, множник x2 − 4x + 8 є незвідним і розклад на прості дроби над полем дійсних чисел такий
Множачи на x3 − 4x2 + 8x, отримуємо тотожність
Беручи x = 0, ми бачимо, що 16 = 8A, отже A = 2. Порівнюючи коефіцієнти при x2 ми бачимо, що 4 = A + B = 2 + B, отже B = 2. З порівняння лінійних коефіцієнтів ми бачимо, що −8 = −4A + C = −8 + C, отже C = 0. В підсумку,
Приклад 3
Цей приклад демонструє майже всі можливі хитрощі, які могли б знадобитися в розв'язанні за допомогою СКА.
Після ділення многочленів і факторизації знаменника, маємо
Розклавши на прості дроби отримує таку форму
Множачи на (x − 1)3(x2 + 1)2 переходимо до тотожних многочленів
Беручи x = 1 отримуємо 4 = 4C, отже C = 1. Так само, беручи x = i отримуємо 2 + 2i = (Fi + G)(2 + 2i), отже Fi + G = 1, звідси F = 0 і G = 1 через прирівнювання дійсних і уявних складових. З C = G = 1 і F = 0, беручи x = 0 ми отримуємо A − B + 1 − E − 1 = 0, таким чином E = A − B.
Маємо тотожність
Розкриваючи дужки і сортуючи степені x отримуємо
Тепер ми можемо порівняти коефіцієнти і побачити, що
з A = 2 − D і −A −3 D =−4 випливає, що A = D = 1 і з цього B = 0, далі C = 1, E = A − B = 1, F = 0 і G = 1.
Отже, розклад на прості дроби для ƒ(x) такий
Замість розкривання дужок, інші лінійні залежності коефіцієнтів можна було отримати через обчислення похідних у x=1 і x=i в попередній поліноміальній тотожності. (Для цього згадаймо, що похідна в x=a від (x−a)mp(x) зникає якщо m > 1 і є просто p(a) якщо m=1.)
Отже, наприклад, перша похідна в x=1 дає
тобто 8 = 2B + 8 отже B=0.
Розкладання раціональних дробів на елементарні дроби
Класичним прикладом застосування методу невизначених коефіцієнтів є розкладання правильного раціонального дробу в області комплексних або дійсних чисел на найпростіші дроби.
Нехай і — многочлени з комплексними коефіцієнтами, причому степінь многочлена менше степені многочлена , коефіцієнт при старшому члені многочлена дорівнює 1, ― корені многочлена з кратностями , отже,
Функція може бути подана, і причому єдиним способом, у вигляді суми елементарних дробів
де ― невідомі поки комплексні числа (їх кількість дорівнює степені ).
Для їх знаходження обидві частини рівності приводять до спільного знаменника. Після його відкидання і приведення в правій частині подібних членів одержується рівність, яка зводиться до системи лінійних рівнянь відносно .
Примітка. Знаходження невідомих можна спростити, якщо має некратні корені . Після множення на останньої рівності і підстановки безпосередньо одержуємо значення відповідного коефіцієнта .
Джерела
- Корн Г., Корн Т. (1977). Справочник по математике для научних работников и инженеров (рос.) (вид. друге). Москва: Наука. с. 832 с.
Див. також
Посилання