Примарний ідеалПримарний ідеал — ідеал комутативного кільця, для якого, якщо є елементом , то або теж є елементом для деякого натурального Є важливим поняттям в комутативній алгебрі. Довільний ідеал в кільці Нетер має примарний розклад, тобто може бути записаний як перетин скінченної кількості примарних ідеалів. Цей результат відомий як теорема Ласкера — Нетер. Всі прості ідеали є примарними ідеалами. Якщо — примарний ідеал, тоді асоційований простий ідеал є радикалом Ідеал в такому випадку називають -примарним. Якщо максимальний простий ідеал, тоді довільний ідеал, що містить степінь є -примарним. Не всі -примарні ідеали є степенями наприклад, ідеал (x, y2) є -примарним для ідеалу P = (x, y) в кільці k[x, y], але він не є степенем P. Джерела
|