Метод вичерпуванняМетод вичерпування (лат. methodus exaustionibus) — античний метод для дослідження площі чи об'єму криволінійних фігур. Ідею методу, в не дуже ясних формулюваннях, висловив ще Антіфон, а розробку і застосування здійснив Евдокс Кнідський. Обґрунтування цього методу не спирається на поняття нескінченно малих величин, але неявно включає поняття границі. Назву «метод вичерпування» запропонував у 1647 році Грегуар де Сен-Венсан, в античні часи у методу не було спеціальної назви. Опис методуМетод полягав в наступному: для знаходження площі (або об'єму) деякої фігури в цю фігуру вписувалася монотонна послідовність інших фігур і доводилося, що їх площі (об'єми) необмежено наближаються до площі (об'єму) шуканої фігури. Потім обчислювалася границя послідовності площ (об'ємів), для чого висувалася гіпотеза, що вона дорівнює деякому A і доводилося, що зворотне призводить до протиріччя[1]. Оскільки загальної теорії границь не було (греки уникали поняття нескінченності), всі ці кроки, включаючи обґрунтування єдиності границь, повторювалися для кожного завдання. У такій формі метод вичерпування добре вписувався в строго дедуктивну побудову античної математики, проте мав декілька суттєвих недоліків. По-перше, він був винятково громіздким. По-друге, не було ніякого загального методу для обчислення граничного значення A; Архімед, наприклад, нерідко виводив його з механічного розуміння або просто інтуїтивно вгадував. Урешті, цей метод не придатний для знаходження площ нескінченних фігур. ОбґрунтуванняТеоретична основа методу вичерпування Евдокса викладена в книзі X «Начал» Евкліда. Там формулюється основна лема[2]:
Це одна з небагатьох теорем загальної теорії границь, наведена у античних авторів. У X столітті Сабіт ібн Курра запропонував узагальнення даної леми, замінивши «половину» на «будь-яку частину». За допомогою методу вичерпування Евдокс строго довів ряд вже відомих в ті роки відкриттів (площа кола, об'єм піраміди і конуса). Евклід у своїх «Началах» використовував метод вичерпування для доведення 6 теорем 12-й книги:
ЗастосуванняНайбільш плідним метод вичерпування став в руках видатного послідовника Евдокса, Архімеда, який зміг його значно удосконалити і віртуозно застосовував для багатьох нових відкриттів. Зокрема, він виявив:
В Середні віки європейські математики також застосовували метод вичерпування, поки він не був витіснений спочатку більш потужним і технологічним методом неподільних, а потім — математичним аналізом. Примітки
Література
|