База топології — множина відкритих підмножин X така, що кожна відкрита множина є об'єднанням деяких елементів . Поняття бази — одне з основних в топології. У багатьох питаннях, що стосуються відкритих множин деякого простору, досить обмежитися розглядом елементів його бази. Простір може мати багато баз, найбільшу з яких утворює множина всіх відкритих множин.
База топології однозначно визначає топологію. Тому для визначення деякої топології на просторі Х достатньо визначити деяку базу, а за відкриті множини взяти всі можливі об'єднання елементів бази. Щоб система множин , була базою якоїсь топології простору Х, необхідно і достатньо, щоб вона задовольняла дві умови:
- Система є покриттям простору X.
- Для будь-яких двох елементів B1, B2 системи і будь-якої точки x з їхнього перетину знайдеться деякий елемент B3 системи який містить точку х і є підмножиною перетину B1, B2.
Приклади
- Якщо X і Y — топологічні простори з базами топологій і , тоді топологія на декартовому добутку X×Y задається за допомогою бази
При цьому топологія на X × Y не залежатиме від того, які бази просторів X і Y використовуються для її завдання. Така топологія називається (стандартною) топологією декартового добутку топологічних просторів.
- Топологія простору дійсних чисел задається системою всіх інтервалів (а,b), яка складає базу цієї топології. Аналогічно топологія простору задається базою відкритих елементів і ця топологія, очевидно, збігається із стандартною топологією прямого добутку просторів.
- Прикладом множини відкритих множин, що не є базою може бути наприклад множина інтервалів виду (−∞, a) і (a, ∞) де a — деяке дійсне число.
Пов'язані означення
- Мінімум серед потужностей усіх баз називається вагою топологічного простору X.
- В просторі ваги існує усюди щільна множина потужності .
- Простори із зліченною базою називаються також просторами з другою аксіомою зліченності.
- Локальною базою простору X в точці (базою точки x) називається множина його відкритих множин, що задовольняє властивість: для будь-якого околу Ox точки x знайдеться елемент такий, що .
- Простори, що мають зліченну локальну базу в кожній точці, називаються просторами з першою аксіомою зліченності.
- Нехай — деякі кардинальні числа. База простору X називається -точковою, якщо кожна точка належить не більше ніж елементам сімейства . Зокрема, при база називається диз'юнктивною, при скінченному — точково скінченною, при — точково зліченною.
Властивості
- Множина відкритих в X множин є базою тоді і тільки тоді, коли вона є локальною базою кожної точки простору X .
Варіації і узагальнення
- Існує також двоїсте поняття замкнутої бази. Множина F підмножин топологічного простору називається замкнутою базою, якщо кожна відкрита підмножина може бути подана як перетин деяких елементів F.
- Передбаза — множина Y відкритих підмножин топологічного простору X така, що сукупність всіх множин, що є перетином скінченного числа елементів Y, утворює базу простору X.
Джерела