Інваріант графа

Приклад графа, який має такі властивості як планарність та зв'язність, також має порядок 6, розмір 7, діаметр 3, обхват 3, вершину зв'язність 1, та послідовність степенів вершин <3, 3, 3, 2, 2, 1>

Інваріант графа в теорії графів — деяке значення (зазвичай числове) або упорядкований набір значень (хеш-функція), яке характеризує структуру графа і не залежить від способу позначення вершин або графічного зображення графа. Відіграє важливу роль при перевірці ізоморфізму графів, а також в задачах комп'ютерної хімії.

Приклади інваріантів

До інваріантів графа відносяться:

,
де  — мінімальна відстань між вершинами і .
  • Індекс Рандича — величина
.
  • Індекс Хосойі — число парувань ребер графа плюс один.
  • Коефіцієнт сітчастості планарного графа — відношення кількості обмежених граней графа до можливого числа граней інших планарних графів з тим самим числом вершин.
  • Міні-код і максі-код матриці суміжності, які одержують шляхом виписування двійкових значень матриці суміжності в рядок з подальшим переведенням отриманого двійкового числа в десяткову форму. Міні-коду відповідає такий порядок слідування рядків і стовпців, при якому отримане значення є мінімально можливим; максі-коду — відповідно максимальним.
  • Мінімальне число вершин, яке необхідно вилучити для отримання незв'язного графа.
  • Мінімальне число ребер, яке необхідно вилучити для отримання незв'язного графа.
  • Мінімальне число вершин, необхідне для покриття ребер.
  • Мінімальне число ребер, необхідне для покриття вершин.
  • Нещільність графа  — число вершин максимального по включенню безреберного підграфа (найбільша кількість попарно несуміжних вершин). Легко помітити, що та .
  • Охоплення графа — число ребер в складі мінімального циклу.
  • Визначник матриці суміжності.
  • Щільність графа  — число вершин максимальної по включенню кліки.
  • Упорядкований за зростанням або спаданням вектор степенів вершин . В алгоритмах перебору для визначення ізоморфізму графів як можливо-ізоморфні пари вершин вибираються вершини з однаковими степенями, що сприяє зменшенню трудомісткості перебору. Використання даного інваріанта для k-однорідних графів не приводить до зниження обчислювальної складності перебору, так як степені всіх вершин таких графів однакові: .
  • Упорядкований за зростанням або спаданням вектор власних чисел матриці суміжності графа (спектр графа). Сама по собі матриця суміжності не є інваріантом, так як при зміні нумерації вершин вона зазнає перестановки рядків і стовпців.
  • Число вершин і число дуг/ребер .
  • Число компонент зв'язності графа .
  • Число Хардвігера .
  • Характеристичний многочлен матриці суміжності.
  • Хроматичне число .

Як інваріант можна розглядати не одне з наведених вище чисел, а їх кортеж (суперіндекс) виду , якому, у свою чергу, може бути зіставлений многочлен виду

сумування ведеться до останнього відмінного від нуля значення . Подібним чином можна ввести ще кілька інваріантів графа:

  • , де  — число вершин степеня i;
  • , де  — число безреберних підграфів з і вершинами;
  • , де  — число повних i-вершинних підграфів (i-клік);
  • , де  — число різних стягувань зв'язного графа на i-кліку;
  • , де  — число компонент зв'язності з і вершин;
  • , де  — число i-розфарбувань графа (правильних розфарбувань з використанням і кольорів).

Системи інваріантів графа, залежні від двох і більше параметрів, можна записати у вигляді многочленів від кількох формальних змінних Наприклад:

  • , де  — число підграфів графа , які мають вершин і ребер;
  • , де  — кількість i-вершинних підграфів, для яких число голок (ребер, які з'єднують вершини підграфа з іншими вершинами графа) дорівнює ;
  • , де  — кількість i-вершинних підграфів, які мають ребер і голок (узагальнення інваріантів і );
  • Многочлен Татта.

Збіг інваріантів є необхідною, але не достатньою умовою наявності ізоморфізму[3]

Повний інваріант

Інваріант називається повним, якщо збіг інваріантів графів є необхідним і достатнім для встановлення ізоморфізму. Наприклад, кожне зі значень і є повним інваріантом для графа з фіксованим числом вершин .

Трудомісткість обчислення

Інваріанти розрізняються за трудомісткістю обчислення. Інваріанти , , і обчислюються тривіально, в той час, як обчислення інваріантів , , , , , і залежних від них може бути досить обчислювально важким. Існують ймовірнісні алгоритми визначення значень наведених «важкообчислюваних» інваріантів, однак застосування подібних алгоритмів допускається не завжди.

В даний час повний інваріант графа, обчислюваний за поліноміальний час, невідомий, проте не доведено, що він не існує. Спроби його відшукання неодноразово робилися в 60-х — 80-х роках XX століття, однак не увінчалися успіхом.

Застосування в комп'ютерній хімії

Багато інваріантів (топологічні індекси) використовуються в комп'ютерній хімії для вирішення широкого кола загальних і спеціальних завдань[4]. До цих завдань відносяться: пошук речовин з наперед заданими властивостями (пошук залежностей типу «структура-властивість», «структура-фармакологічна активність»), первинна фільтрація структурної інформації для безповторної генерації молекулярних графів заданого типу та ряд інших. Часто при цьому поряд з топологічними індексами (залежними тільки від структури молекули) використовується інформація і про хімічний склад з'єднання[5].

Див. також

Примітки

  1. Wiener, H. (1947), Structural determination of paraffin boiling points, Journal of the American Chemical Society, 1 (69): 17—20, doi:10.1021/ja01193a005.
  2. Rouvray, Dennis H. (2002), The rich legacy of half a century of the Wiener index, у Rouvray, Dennis H.; King, Robert Bruce (ред.), Topology in Chemistry: Discrete Mathematics of Molecules, Horwood Publishing, с. 16—37.
  3. Зыков А. А. Основы теории графов. — М. : Наука, 1986. — 384 с. — ISBN 978-5-9502-0057-1.
  4. Химические приложения топологии и теории графов = Chemical Applications of Topology and Graph Theory / Под ред. Р. Кинга. — М. : Мир, 1987. — 560 с.
  5. М. И. Трофимов, Е. А. Смоленский, Известия Академии наук. Серия химическая, 2005, 2166—2176.