Surjektiv funktionEn surjektiv funktion, eller en surjektion, är en funktion f från mängden X på mängden Y, det vill säga en funktion f från X till Y, sådan att dess värdemängd Vf = Y. För varje funktion f finns en surjektiv funktion med samma funktionsgraf, som går från definitionsmängden Df på värdemängden Vf.[1] Definitionen kan även formuleras så: Låt X och Y vara två mängder och f en funktion f: X→Y. f sägs då vara surjektiv, eller en surjektion, om det för varje y i Y finns ett x i X sådant att f(x) = y. Detta innebär således att varje element i en surjektiv funktions målmängd är ett funktionsvärde. Surjektioner mellan två mängderLåt beteckna mängden surjektioner från en n-mängd X till en k-mängd Y, då gäller där s(n, k) är ett stirlingtal av andra slaget. ExempelAntalet surjektioner från till är s(6, 7)=0 eftersom en mängd av 6 element inte kan delas upp i 7 icke-tomma delmängder. Vidare finns inga surjektioner f: X→Y så att |X|<|Y| när mängderna är ändliga. Antalet surjektioner från till är
BevisVarje surjektion f: X→Y medför en partition av X i k delar. Om vi har en partition i k delar finns det k! surjektioner som åstadkommer partitionen. Eftersom de k delmängderna kan bli tilldelade till de k elementen i Y på vilket bijektivt sätt som helst blir antalet surjektioner k!*s(n, k). Se ävenKällor
Noter
Externa länkar
|