SimplexInom geometri är ett simplex, ibland kallat hypertetraeder, en n-dimensionell motsvarighet till en triangel eller tetraeder. Ett n-simplex är den enklast möjliga polytopen i n-rummet, och en regelbunden polytop (och tillika ett regelbundet simplex) om alla dess sidor är av samma längd.[1] Namnet kommer från latinets simplex som betyder "enkel". En -dimensionell simplex har Schläfli-symbolen med treor. DefinitionMer specifikt är ett simplex det konvexa höljet till en ändlig uppsättning punkter i ett euklidiskt rum. Ett simplex är ett n-simplex om det är mängden av det konvexa höljet av affint oberoende punkter. Om mängden är så bildar vektorerna en bas för det associerade vektorrummet.[2] Enklare uttryckt är det en uppsättning punkter som är sådan att inget m-dimensionellt plan rymmer fler än punkter från uppsättningen. I enlighet med detta utgörs ett simplex av en given dimension av en punkt fler än dess givna dimension. Ett 0-dimensionellt simplex, eller 0-simplex, blir alltså en punkt. Ett 1-dimensionellt simplex, 1-simplex, är på samma sätt två punkter som avgränsar ett linjesegment. Ett 2-simplex är således en triangel, ett 3-simplex en tetraeder och ett 4-simplex en pentatop (i samtliga fall med ett inre).[3] RubrikLåt vara hörn i ett n-simplex i En. Då kan varje punkt i En uttryckas på formen
där är reella tal.[4] ElementEftersom en delmängd av en affint oberoende mängd är affint oberoende självt, följer det att alla element av lägre dimension som utgör ett simplex även själva är simplexar.[5] Mer specifkt sägs det konvexa höljet till någon delmängd m av de n punkterna vara ett simplex och kallas en m-sida. 0-sidor kallas hörn, 1-sidor kanter, -sidor celler och (den enda) n-sidan är hela simplexet. Generaliserat är antalet m-sidor lika med binomialkoefficienten och antalet m-sidor hos ett n-simplex finns i -kolumnen på rad i Pascals triangel. Ett enkelt sätt att se detta är att föreställa sig en triangel som, enligt ovan, innehåller tre 0-sidor, alltså de tre hörnen. Den innehåller tre 1-sidor (eller kanter), det vill säga linjesegmenten som sammabinder hörnpunkterna. Dess n-sida är triangeln självt.
Benämningar
TillämpningarDen så kallade simplexmetoden är en metod för att lösa linjära optimeringsproblem. Dessutom är simplex och delsimplex centrala objekt i algebraisk topologi. KällorNoter
Litteratur
|