DelmängdsaxiometDelmängdsaxiomet är det axiom inom ZFC som tillåter mängder vars element har en speciell egenskap . I princip säger axiomet att varje definierbar delklass av en mängd är en mängd. FormuleringGivet en mängd A, så finns en mängd B sådan att x är ett element i B om och endast om x är ett element i A och är sant för x. När man i matematik vill specificera en sådan mängd B som beskrivs ovan skriver man Se även |