Доказательство abc-гипотезы долгое время было одной из главных нерешённых проблем теории чисел, и остается таковой до сих пор. Статус этой проблемы в настоящее время спорный. Подтвердить или опровергнуть доказательство Мотидзуки, полученное в 2012 году, пока не удалось.
Для любого существует постоянная , при которой для любых трёх взаимно простых целых чисел , и , таких, что , выполняется неравенство
где — радикал числа , то есть число, равное произведению простых делителей произведения .
Замечания
Не теряя общности, можно рассматривать только упорядоченные по возрастанию натуральные числа, и . Тогда неравенство сводится к следующему:
Условие необходимо. Для любого существует тройка взаимно простых чисел таких, что . Например тройка вида , где .
Следствия
Гипотеза Била и Великая теорема Ферма
Из справедливости abc-гипотезы следует справедливость гипотезы Била для достаточно больших , а из неё — справедливость великой теоремы Ферма для достаточно больших степеней[3].
Доказательство гипотезы Била на основе abc-гипотезы
Согласно гипотезе Била, если (, , , , , — натуральные и ), то , , имеют общий делитель.
Докажем гипотезу Била для достаточно больших от противного. Предположим, существует бесконечное количество , для которых гипотеза Била неверна. Применим abc-гипотезу, согласно которой:
Учтём, что . Поэтому:
Поскольку из условий теоремы очевидно, что и , то . Тогда:
Прологарифмировав обе части неравенства и разделив на , получим ограничение сверху на величину :
, (*)
причём, отношение должно быть конечным, поскольку, по условию , , — натуральные (то есть )
Таким образом, можно найти некоторое конечное значение , для которого неравенство (*) не выполняется, то есть abc-гипотеза здесь несправедлива, а значит сделанное предположение о неверности гипотезы Била для достаточно больших ошибочно. Для оставшегося конечного количества справедливость гипотезы Била можно доказать численно.
В 2007 году французский математик Люсьен Шпиро[англ.], работами которого была вдохновлена сама abc-гипотеза, заявил, что ему удалось найти доказательство, однако вскоре было обнаружено, что оно ошибочно[4].
Доказательство Мотидзуки
В августе 2012 года авторитетный японский математик Синъити Мотидзуки заявил, что ему удалось доказать abc-гипотезу[5][6]. Предложенное им доказательство оказалось исключительно сложным даже с точки зрения математиков-специалистов[7].
Опубликовав доказательство в интернете, Мотидзуки отказался от всех предложений лично рассказать сообществу о своих результатах, но несколько математиков взялись за самостоятельную проверку доказательства при содействии Мотидзуки. Они публикуют отчёты о ходе этой работы[8]. Начиная с конца 2015 года, Мотидзуки стал понемногу общаться с сообществом о своих результатах[9]. На конец 2017 года в мире насчитывается от 10 до 20 специалистов по теории, созданной Мотидзуки[10]. Таким образом, доказательство Синъити Мотидзуки общедоступно, не опровергнуто, но пока и не считается проверенным в научном сообществе. Длительное пребывание доказательства в этом неопределённом статусе необычно для математических доказательств[10][11], в отличие от случаев, когда в доказательствах, которые считались проверенными и верными, обнаруживались ошибки.
В 2018 году Петер Шольце и Якоб Стикс — специалисты в областях, связанных с abc-гипотезой и работами Мотидзуки, — объявили, что в ключевом для доказательства abc-гипотезы месте теории Мотидзуки (которое давно вызывало особые трудности у математиков, пытавшихся разобраться в теории) имеется непоправимая ошибка[12][7]. Мотидзуки ответил, что Стикс и Шольце неправильно интерпретировали некоторые ключевые аспекты его доказательства и поэтому сделали недопустимые упрощения[13].
На 2020 год доказательство Мотидзуки всё ещё пребывает в неопределённом статусе, математическое сообщество не убеждено в его верности, несмотря на принятие доказательства к публикации в журнале Publications of the Research Institute for Mathematical Sciences (PRIMS) научно-исследовательского института математических наук при Киотском университете (Япония) — института, в котором работает Мотидзуки[14][15]. В марте 2021 года доказательство Мотидзуки было опубликовано в PRIMS[16].
↑D. W. Masser. Open problems (англ.) // Proceedings of the Symposium on Analytic Number Theory / W. W. L. Chen. — London: Imperial College, 1985. — Vol. 25.
↑Mochizuki, Shinichi (August 2012). Inter-universal Teichmuller Theory I: Construction of Hodge Theaters, Inter-universal Teichmuller Theory II: Hodge-Arakelov-theoretic Evaluation, Inter-universal Teichmuller Theory III: Canonical Splittings of the Log-theta-lattice., Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations, доступны на странице http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.htmlАрхивная копия от 2 февраля 2021 на Wayback Machine