В математикецентрализаторподмножестваSгруппыG — это множество элементов G, которые коммутируют с каждым элементом S, а нормализаторS — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппамиG и могут пролить свет на структуру G.
В теории колеццентрализатор подмножества кольца определяется относительно операции полугруппы (умножения). Централизатор подмножества кольца R является подкольцом R. В этой статье также говорится о централизаторах и нормализаторах в алгебре Ли.
Идеализатор[англ.] в полугруппе или кольце — это ещё одна конструкция в том же духе, что централизатор и нормализатор.
Централизатор подмножества S группы (или полугруппы) G определяется как[1]
для всех
Иногда, в случае отсутствия двусмысленности, группа G полностью определяется нотацией. Если S={a} — множество, состоящее из единственного элемента, CG({a}) можно сократить до CG(a). Другим, менее употребимым, обозначением для централизатора служит Z(a), которое проводит параллель с обозначением центра группы. Здесь следует проявлять осторожность, чтобы не спутать центр группы G, Z(G), и централизаторэлементаg в G, который обозначается как Z(g).
НормализаторS в группе (или полугруппе) G по определению равен
Определения похожи, но не идентичны. Если g — централизатор S и s принадлежит S, то должно выполняться , однако, если g — нормализатор, для некоторого t из S, возможно, отличного от s. То же соглашение об опускании G и скобок для множеств из единственного элемента также используется и для нормализатора. Нормализатор не следует путать с нормальным замыканием.
Кольца, алгебры, кольца и алгебры Ли
Если R — кольцо или алгебра, а S — подмножество кольца, то централизатор S в точности совпадает c определением для групп, только вместо G стоит R.
Если — алгебра Ли (или кольцо Ли[англ.]) с произведением Ли [x,y], то централизатор подмножества S определяется как [2]
для всех
Определение централизаторов для колец Ли связано с определением для колец следующим образом. Если R — ассоциативное кольцо, то для R можно задать скобочное произведение [x,y] = xy − yx. Естественно, xy = yx тогда и только тогда, когда [x,y] = 0. Если мы обозначим множество R со скобочным произведением как LR, то ясно, что централизатор кольцаS в R совпадает с централизатором кольца ЛиS в LR.
Нормализатор подмножества S алгебры Ли (или кольца Ли) задаётся равенством[2]
для всех
В то время как это определение является стандартным для термина «нормализатор» в алгебре Ли, следует заметить, что эта конструкция является фактически идеализатором[англ.] множества S в . Если S − аддитивная подгруппа , то является наибольшим подкольцом Ли (или подалгеброй Ли), в которой S является идеалом Ли.[2]
Централизатор и нормализатор S являются подгруппами G.
Ясно, что CG(S)⊆NG(S). На самом деле, CG(S) всегда является нормальной подгруппойNG(S).
CG(CG(S)) содержит S, но CG(S) не обязательно содержит S. CG(S) будет совпадать с S если st=ts для любого s и t из S. Естественно, что если H — абелева подгруппа G, CG(H) содержит H.
Если S является подполугруппой G, то NG(S) содержит S.
Если H является подгруппой G, то наибольшая подгруппа, в которой H нормальна, является подгруппой NG(H).
Центр G — это в точности CG(G) и G является абелевой группой в том и только в том случае, когда CG(G)=Z(G) = G.
Для множеств, состоящих из одного элемента, CG(a)=NG(a).
Из принципа симметрии, если S и T являются двумя подмножествами G, T⊆CG(S) в том и только в том случае, когда S⊆CG(T).
Если мы определим гомоморфизм группыT : G → Inn(G), положив T(x)(g) = Tx(g) = xgx −1, то мы можем описать NG(S) и CG(S) в терминах действия группы Inn(G) на G: стабилизатор S в Inn(G) — это T(NG(S)), и подгруппа Inn(G), фиксирующая S — это T(CG(S)).
Централизаторы в кольцах и алгебрах — это подкольца и подалгебры, соответственно, а централизаторы в кольцах Ли и алгебрах Ли — это подкольца Ли и подалгебры Ли, соответственно.
Нормализатор S в кольце Ли содержит централизатор S.
CR(CR(S)) содержит S, но не обязательно совпадает с ним. Теорема о двойном централизаторе[англ.] рассматривает случаи, когда в результате получаем совпадение.
Если S является аддитивной подгруппой кольца Ли A, то NA(S) является наибольшим подкольцом Ли A, в котором S — идеал Ли.
I. Martin Isaacs. Algebra: a graduate course. — reprint of the 1994 original. — Providence, RI: American Mathematical Society, 2009. — С. xii+516. — (Graduate Studies in Mathematics). — ISBN 978-0-8218-4799-2.