Участник:Arbnos/Написание статей/Нерешённые проблемы астрономии

Эмпирические явления без чёткого научного объяснения

Космология и астрономия

Существование Вселенной
Каково происхождение материи, энергии и пространства-времени, сформировавших Вселенную/Мультивселенную?
Барионная асимметрия Вселенной
Почему в наблюдаемой Вселенной существует гораздо больше материи, чем антиматерии?[1]
Проблема космологической постоянной[2]
Почему нулевая энергия вакуума не приводит к большому значению космологической постоянной? Что отменяет эту зависимость?
Оценочное распределение темной материи и темной энергии во вселенной. 74 % — темная энергия, 22 % темная материя, 3,6 % межгалактический газ, 0,4 % — наблюдаемые звезды.
Тёмная энергия[3]
Что является причиной наблюдаемого ускоренного расширения Вселенной (фаза де Ситтера)? Почему плотность энергии тёмной компоненты энергии — величина того же порядка, что и плотность вещества в настоящее время, тогда как эти два феномена с течением времени развивались совершенно по-разному? Может быть, это потому, что мы ведём наблюдения в нужное время? Является ли тёмная энергия космологической константой, или же она является динамическим полем — некой квинтэссенцией, такой как фантомная энергия?
Тёмная материя[3]
Что такое тёмная материя?[4][1] Связана ли она с суперсимметрией? Связан ли феномен тёмной материи с той или иной формой материи, или это на самом деле является расширением гравитации?
Логарифмичесие графики показывают плотность темной энергии и плотность темной материи по горизонтали отложен временной фактор . Две прямые линии пересекаются в текущей эпохе.[5]
Тёмный поток
Что является причиной согласованного движения большой группы скоплений галактик к одной точке Вселенной?[6]
Энтропия (направление времени)
Почему Вселенная имела такую низкую энтропию в прошлом, приведшую в результате к различию между прошлым и будущим и второму закону термодинамики?
Проблема горизонта[7]
Почему удалённая от нас часть Вселенной так однородна, тогда как теория Большого взрыва предсказывает измеримую анизотропию небесной сферы больше, чем она наблюдается? Возможным подходом к решению являются гипотезы инфляции и переменной скорости света.
Изотропия реликтового излучения
Некоторые общие особенности микроволнового излучения неба на расстояниях более 13 миллиардов световых лет, по всей видимости, говорят о наличии как движения, так и ориентации Солнечной системы. Является ли это следствием систематических ошибок обработки, загрязнением результатов локальными эффектами или необъяснимым нарушением принципа Коперника?
Форма Вселенной
Что такое 3-многообразие сопутствующего пространства, то есть сопутствующее пространственное сечение Вселенной, неофициально называемое «формой» Вселенной? Ни её кривизна, ни топология в настоящее время неизвестны, хотя кривизна скорее всего «близка» к нулю на наблюдаемых масштабах. Гипотеза космической инфляции предполагает, что форма Вселенной может быть неизмеримой, но с 2003 года команда Жана-Пьера Люмине и другие группы полагают, что Вселенная может иметь форму додекаэдрического пространства Пуанкаре. Является ли форма Вселенной неизмеримой, представляет собой пространство Пуанкаре или имеет другое 3-многообразие?
Гравитационные волны
Можно ли гравитационные волны обнаружить экспериментально?[8][9]

Физика высоких энергий, физика элементарных частиц

Гипотетические частицы
Какие из гипотетических частиц, предсказываемых суперсимметричной теорией и другими известными теориями, на самом деле существуют в природе?

Астрономия и астрофизика

Струи аккреционных дисков
Почему некоторые астрономические объекты, окружённые аккреционным диском, такие как активные ядра галактик, испускают релятивистские струи, излучаемые вдоль полярной оси? Почему у многих аккреционных дисков существуют квази-периодические колебания? Почему период этих колебаний имеет масштаб, обратно пропорциональный массе центрального объекта? Почему иногда существуют обертоны, и почему у разных объектов обертоны имеют различные соотношения частоты?
Проблема нагрева короны
Почему солнечная корона (атмосферный слой Солнца) намного горячее, чем поверхность Солнца? Почему магнитное пересоединение совершается на много порядков быстрее, чем предсказывают стандартные модели?
Гамма-всплески
Каково происхождение этих краткосрочных всплесков высокой интенсивности?[10]
Сверхмассивные чёрные дыры
Какова причина отношения М-сигма между массой сверхмассивной чёрной дыры и дисперсией скорости галактики?[11]
Наблюдаемые аномалии
Аномалия «Гиппарха»: Каково фактическое расстояние до Плеяд?
Аномалия «Пионеров»[4]: Что вызывает небольшое дополнительное ускорение в направлении Солнца космических аппаратов «Пионер»?[12][13] (Проблема решена в 2012 году группой Вячеслава Турышева[англ.]*, JPL[14])
Аномалия сближения[англ.]: Почему наблюдаемая энергия спутников, совершающих гравитационный манёвр, отличается от предсказываемых теорией значений?
Проблема вращения галактик: Является ли тёмная материя ответственной за различия в наблюдаемых и теоретических скоростях вращения звёзд вокруг центра галактик, или же причина в чём-то ином?
Сверхновые
Каков точный механизм, посредством которого имплозии умирающих звёзд становятся взрывом?
Космические лучи сверхвысоких энергий[4]
Почему некоторые космические лучи обладают невероятно высокой энергией (так называемые частицы OMG), учитывая, что вблизи Земли нет источников космических лучей с такой энергией? Почему некоторые космические лучи, испускаемые далёкими источниками, имеют энергию выше предела Грайзена-Зацепина-Кузьмина?[15][16]
Замедление времени пульсара
Почему выбросы пульсаров на больших космологических расстояниях не проявляют предсказанное свойство замедления времени?
Скорость вращения Сатурна
Почему магнитосфера Сатурна проявляет (медленно меняющуюся) периодичность, близкую к той, на которой вращаются облака планеты? Какова истинная скорость вращения глубоких внутренних слоёв Сатурна?[17]

Экспериментальная астрофизика

  • Детектирование гравитационных волн и создание на этой основе гравитационно-волновой астрономии[18][19].
  • Проверка закона всемирного тяготения Ньютона на расстояниях, меньших 55 мкм, с целью проверки гипотезы о существовании добавочных пространственных измерений[20]

В планетарной астрономии:

Кольца Сатурна: Почему они плоские и тонкие?[22] До сих пор нет точного решения многих частных проблем космогонии: как сформировалась Луна, как образовались кольца вокруг планет-гигантов, почему Венера вращается очень медленно и в обратном по отношению к другим планетам направлении и др.       Нет общепринятого решения главной проблемы: как возникла Солнечная система? Вряд ли она будет решена до тех пор, пока не изучим аналогичные планетные системы у других звезд.

В звездной астрономии:

Не существует детальной модели Солнца, способной точно объяснить все его наблюдаемые свойства, в частности поток нейтрино из ядра.

Нет детальной физической теории некоторых проявлений звездной активности. Не до конца ясна причина взрыва сверхновых звезд. Не совсем понятно, почему из окрестностей некоторых звезд выбрасываются узкие струйки газа. Особенно загадочным являются короткие вспышки гамма-излучения, регулярно регистрируемые в различных направлениях на небе. Не ясно даже, связаны они со звездами или с иными объектами и на каком расстоянии от нас эти объекты находятся.

Теоретические проблемы астрономии Солнца

Проблема солнечных нейтрино

Ядерные реакции, происходящие в ядре Солнца, приводят к образованию большого количества электронных нейтрино. При этом измерения потока нейтрино на Земле, которые постоянно производятся с конца 1960-х годов, показали, что количество регистрируемых солнечных электронных нейтрино приблизительно в два-три раза меньше, чем предсказывает стандартная солнечная модель, описывающая процессы в Солнце. Это рассогласование между экспериментом и теорией получило название «проблема солнечных нейтрино» и более 30 лет было одной из загадок солнечной физики. Положение осложняется тем, что нейтрино крайне слабо взаимодействует с веществом, и создание нейтринного детектора, который способен достаточно точно измерить поток нейтрино даже такой мощности, как исходящий от Солнца — технически сложная и дорогостоящая задача (см. Нейтринная астрономия).

Предлагалось два главных пути решения проблемы солнечных нейтрино. Во-первых, можно было модифицировать модель Солнца таким образом, чтобы уменьшить предполагаемую термоядерную активность (а, значит, и температуру) в его ядре и, следовательно, поток излучаемых Солнцем нейтрино. Во-вторых, можно было предположить, что часть электронных нейтрино, излучаемых ядром Солнца, при движении к Земле превращается в нерегистрируемые обычными детекторами нейтрино других поколений (мюонные и тау-нейтрино)[23]. Сегодня понятно, что правильным, скорее всего, является второй путь.

Для того, чтобы имел место переход одного сорта нейтрино в другой — то есть происходили так называемые нейтринные осцилляции — нейтрино должно иметь отличную от нуля массу. В настоящее время установлено, что это действительно так[24]. В 2001 году в шаблон не поддерживает такой синтаксис были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов, и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»). Таким образом, в настоящее время проблема солнечных нейтрино, по-видимому, решена.

Проблема нагрева короны

Над видимой поверхностью Солнца (фотосферой), имеющей температуру около 6000 К, находится солнечная корона с температурой более 1 000 000 К. Можно показать, что прямого потока тепла из фотосферы недостаточно для того, чтобы привести к такой высокой температуре короны.

Предполагается, что энергия для нагрева короны поставляется турбулентными движениями подфотосферной конвективной зоны. При этом для переноса энергии в корону предложено два механизма. Во-первых, это волновое нагревание — звук и магнитогидродинамические волны, генерируемые в турбулентной конвективной зоне, распространяются в корону и там рассеиваются, при этом их энергия переходит в тепловую энергию корональной плазмы. Альтернативный механизм — магнитное нагревание, при котором магнитная энергия, непрерывно генерируемая фотосферными движениями, высвобождается путём пересоединения магнитного поля в форме больших солнечных вспышек или же большого количества мелких вспышек[25].

В настоящий момент неясно, какой тип волн обеспечивает эффективный механизм нагрева короны. Можно показать, что все волны, кроме магнитогидродинамических альфвеновских, рассеиваются или отражаются до того, как достигнут короны[26], диссипация же альфвеновских волн в короне затруднена. Поэтому современные исследователи сконцентрировали основное внимание на механизм нагревания с помощью солнечных вспышек. Один из возможных кандидатов в источники нагрева короны — непрерывно происходящие мелкомасштабные вспышки[27], хотя окончательная ясность в этом вопросе ещё не достигнута.

В галактической астрономии:

      Не решена проблема скрытой массы, состоящая в том, что гравитационное поле Галактики в несколько раз сильнее, чем это может быть обеспечено наблюдаемым в ней веществом.       Нет точного сценария происхождения и эволюции Галактики.

Во внегалактической астрономии:

      Не решена проблема скрытой массы в скоплениях галактик.

      Нет единой теории формирования галактик.

      Не решены основные проблемы космологии: нет законченной физической теории рождения Вселенной и не ясна судьба Вселенной в будущем. Для решения этих и многих других проблем астрономии необходимы прежде всего новые наблюдения во всем диапазоне электромагнитного спектра, а также регистрацию космических частиц (включая нейтрино) и гравитационных волн. Главная задача астрономов – создание все более совершенных приборов для наблюдения за космическими объектами или для непосредственного их изучения в Солнечной системе.


Одной из проблем является неопределённость в значении постоянной Хаббла и её изотропии. Одна группа исследователей утверждает, что значение постоянной Хаббла флуктуирует на масштабах 10-20°[28]. Возможных причин этому явлению несколько:

  1. Реальный физический эффект — в таком случае космологическая модель должна быть кардинально пересмотрена;
  2. Стандартная процедура усреднения ошибок некорректна[29].

Это также ведет к пересмотру космологической модели, но возможно, не такой значительной[30]. В свою очередь, многие другие обзоры и их теоретическая интерпретация не показывают анизотропии, превышающей локально обусловленную ростом неоднородности, в которую входит и наша Галактика, в изотропной в целом Вселенной[31][32][33][34].


1)Метод определения расстояния по цефеидам и звёздам типа RR Лиры:

Проблема: для цефеид остаётся серьёзной проблемой точное определение нуль-пункта зависимости «период пульсации — светимость». Определение данным методом расстояний сопряжено с рядом трудностей: Необходимо выделить отдельные звёзды. В пределах Млечного Пути это не составляет особого труда, но чем больше расстояние, тем меньше угол, разделяющий звёзды. Необходимо учитывать поглощение света пылью и неоднородность её распределения в пространстве.

2)Метод определения расстояния по сверхновым типа Ia:

Обычно, помимо общих для всех фотометрических методов, к недостаткам и открытым проблемам относят[35]:

  1. Проблема К-поправки. Суть этой проблемы состоит в том, что измеряется не боллометрическая интенсивность (интегрированная по всему спектру), а в определенном спектральном диапазоне приемника. Это значит, что для источников, имеющие разные красные смещения, измеряется интенсивность в разных спектральных диапазонах. Для учета этого различия вводится особая поправка, называемая К-поправка.
  2. Форма кривой зависимости расстояния от красного смещения измеряется разнымиобсерваториями на разных инструментах, что порождает проблемы с калибровками потоков и т. п.
  3. Раньше считалось, что все сверхновые Ia — это взрывающиеся белые карлики в тесной двойной системе, где второй компонент это красный гигант. Однако появились свидетельства, что по крайне мере часть из них могут возникать в ходе слияния двух белых карликов, а значит этот подкласс уже не походит для использования в качестве стандартной свечи.
  4. Зависимость светимости сверхновой от химического состава звезды-предшественницы.

3) Метод определения расстояния по красным гигантам

Основная проблема данного метода — выделение красных гигантов из наблюдений звёздного состава галактики. Существует два пути её решения[36]:

  • Классический — метод выделения края изображений. При этом обычно применяют Собелевский фильтр. Начало провала — искомая точка поворота. Иногда вместо собелевского фильтра в качестве аппроксимирующей функции берут гауссиану, а функция выделения края зависит от фотометрических ошибок наблюдений. Однако, по мере ослабления звезды растут и ошибки метода. В итоге предельно измеряемый блеск на две звездных величины хуже, чем позволяет аппаратура.
  • Второй путь — построение функции светимости методом максимального правдоподобия. Данный способ основывается на том, что функция светимости ветви красных гигантов хорошо аппроксимируется степенной функцией:
где a — коэффициент, близкий к 0,3, m — наблюдаемая звёздная величина. Основная проблема — расходимость в некоторых случаях рядов, возникающих в результате работы метода максимального правдоподобия[36].

Проблемы теории Большого взрыва

Несмотря на значительные успехи, теория горячей Вселенной сталкивается с рядом трудностей. Если бы Большой взрыв вызвал расширение Вселенной, то в общем случае могло бы возникнуть сильное неоднородное распределение вещества, чего не наблюдается. Теория Большого Взрыва также не объясняет расширение Вселенной, она принимает его как факт[37].

Теория также предполагает, что соотношение числа частиц и античастиц на первоначальной стадии было таким, что дало в результате современное преобладание материи над антиматерией. Можно предположить, что вначале Вселенная была симметрична — материи и антиматерии было одинаковое количество, но тогда чтобы объяснить барионную асимметрию необходим некоторый механизм бариогенеза, который должен приводить к возможности распада протона, чего также не наблюдается[38].

Различные теории Великого объединения предполагают рождение в ранней Вселенной большого числа магнитных монополей, до сего момента также не обнаруженных[39].

См. также

Примечания

  1. 1 2 Открытые вопросы физики ядра и частиц
    • А.В. Засов.,К.А. Постнов. Общая Астрофизика. — Фрязино: Век 2, 2006. — С. 421-432. — 496 с. — ISBN 5-85099-169-7.
    • Д.С. Горбунов, В.А. Рубаков. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва.. — Москва: ЛКИ, 2008. — С. 45-80. — 552 с. — ISBN 978-5-382-00657-4.
  2. 1 2 Гинзбург И. Ф. «Нерешённые проблемы фундаментальной физики» УФН 179 525—529 (2009)
  3. 1 2 3 13 things that do not make sense newscientistspace, 19 March 2005, Michael Brooks
  4. Steinardt, Paul (1997), "Cosmological Challenges For the 21st Century", in Val Fitch; et al. (eds.), Critical problems in physics: proceedings of a conference celebrating the 250th anniversary of Princeton University, Princeton, New Jersey: Princeton University Press, pp. 138—140, ISBN 978-0-691-05784-2 {{citation}}: |title= пропущен или пуст (справка); Явное указание et al. в: |editor-last= (справка)
  5. «Dark Flow» Discovered at Edge of the Universe: Hundreds of Millions of Stars Racing Towards a Cosmic Hotspot. Dailygalaxy.com (2009-08-26).
  6. Инфляционная стадия расширения Вселенной. Дата обращения: 23 января 2014. Архивировано 16 августа 2013 года.
  7. National Research Council. Gravitation, Cosmology, and Cosmic-Ray Physics. — Washington, D. C. : National Academies Press, 1986. — ISBN 0-309-03579-1.
  8. Paulson, Tom (May 27, 2002). "Catching a cosmic wave of gravity". Seattle Post-Intelligencer. Дата обращения: 10 апреля 2012.
  9. Open Questions, Cosmology and Astrophysics, item 11
  10. Ferrarese, Laura; Merritt, David (2000), "A Fundamental Relation between Supermassive Black Holes and their Host Galaxies", The Astrophysical Journal, 539: L9–L12 {{citation}}: Шаблон цитирования имеет пустые неизвестные параметры: |month= (справка)
  11. Open Questions, Particle Physics, item 13
  12. newscientistspace item 8
  13. Case Closed on the Pioneer Anomaly, Nancy Atkinson // Universe Today, July 18, 2012
  14. Open Questions, Cosmology and Astrophysics, item 12
  15. newscientistspace item 3
  16. Scientists Find That Saturn's Rotation Period is a Puzzle. NASA (28 июня 2004). Дата обращения: 22 марта 2007. Архивировано 21 августа 2011 года.
  17. Липунов В. М. Гравитационно — волновое небо, Соросовский образовательный журнал, 2000, № 4
  18. Андерсен Р. Эхо Большого взрыва, В мире науки, 2013, № 12
  19. В.К. Воронов, А.В. Подоплелов. Современная физика. — М.: КомКнига, 2005. — С. 512. — ISBN 5-484-00058-0.
  20. Яу Ш., Надис С. Теория струн и скрытые измерения Вселенной. — СПб.: Питер, 2013. — С. 322. — ISBN 978-5-496-00247-9.
  21. http://www.nkj.ru/archive/articles/710/
  22. Haxton, W. C. (1995). "The Solar Neutrino Problem" (PDF). Annual Review of Astronomy and Astrophysics. 33: 459—504.
  23. Schlattl, Helmut. (2001). "Three-flavor oscillation solutions for the solar neutrino problem". Physical Review D. 64 (1).
  24. Alfvén H. Magneto-hydrodynamic waves, and the heating of the solar corona. Monthly Notices of the Royal Astronomical Society. v. 107, p. 211 (1947).
  25. Sturrock P. A., Uchida Y. Coronal heating by stochastic magnetic pumping, Astrophysical Journal, v. 246, p. 331 (1981)
  26. Parker E. N. Nanoflares and the solar X-ray corona. Astrophysical Journal, v. 330, p. 474 (1988)
  27. McClure M. L., Dyer, C. C. Anisotropy in the Hubble constant as observed in the HST extragalactic distance scale key project results. — New Astronomy, 2007.
  28. Coley A. A. Cosmological Observations: Averaging on the Null Cone. — eprint arXiv:0905.2442, 2009.
  29. Umeh, Obinna, Larena Julien, Clarkson Chris. The Hubble rate in averaged cosmology. — Journal of Cosmology and Astroparticle Physics, 2011.
  30. Blomqvist, Michael; Mörtsell, Edvard; Nobili, Serena. Probing dark energy inhomogeneities with supernovae. — Journal of Cosmology and Astroparticle Physics, 2008.
  31. Clifton Timothy, Zuntz Joe. Hubble diagram dispersion from large-scale structure. — Monthly Notices of the Royal Astronomical Society, 2009.
  32. Blomqvist, Michael; Enander, Jonas; Mörtsell, Edvard. Constraining dark energy fluctuations with supernova correlations. — Journal of Cosmology and Astroparticle Physics, 2010.
  33. Dai, De-Chang; Kinney, William H.; Stojkovic, Dejan. Measuring the cosmological bulk flow using the peculiar velocities of supernovae. — Journal of Cosmology and Astroparticle Physics, 2011.
  34. Стивен Вайнберг. Космология. — Москва: УРСС, 2013. — С. 68-81. — 608 с. — ISBN 978-5-453-00040-1.
  35. 1 2 Статья с мини-обзором по теме:
    • Makarov, Dmitry; Makarova, Lidia; Rizzi, Luca etc. Tip of the Red Giant Branch Distances. I. Optimization of a Maximum Likelihood Algorithm. — The Astronomical Journal, 2006. — Bibcode2006AJ....132.2729M.
    Частные дополнения:
    • Sakai Shoko, Madore Barry F., Freedman Wendy L. Tip of the Red Giant Branch Distances to Galaxies. III. The Dwarf Galaxy Sextans. — Astrophysical Journal, 1996. — Bibcode1996ApJ...461..713S.
    • Lee Myung Gyoon, Freedman Wendy L., Madore Barry F. The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies. — Astrophysical Journal, 1993. — Bibcode1993ApJ...417..553L.
  36. М. В. Сажин. Современная космология в популярном изложении. — Москва: УРСС, 2002. — С. 104-106. — 240 с. — 2500 экз. — ISBN 5-354-00012-2.
  37. М. В. Сажин. Современная космология в популярном изложении. — Москва: УРСС, 2002. — С. 145-148. — 240 с. — 2500 экз. — ISBN 5-354-00012-2.
  38. Перевод «Официального Сайта Теории Суперструн».

Литература

Не существует детальной модели Солнца, способной точно объяснить все его наблюдаемые свойства, в частности поток нейтрино из ядра. Нет детальной физической теории некоторых проявлений звездной активности. Не до конца ясна причина взрыва сверхновых звезд. Не совсем понятно, почему из окрестностей некоторых звезд выбрасываются узкие струйки газа. Особенно загадочным являются короткие вспышки гамма-излучения, регулярно регистрируемые в различных направлениях на небе. Не ясно даже, связаны они со звездами или с иными объектами, и на каком, расстоянии от нас эти объекты находятся. Не решена проблема скрытой массы в галактиках и скоплениях галактик. Нет единой теории формирования галактик. Нерешены основные проблемы космологии: нет законченной физической теории рождения Вселенной и не ясна судьба Вселенной в будущем.

Ссылки

Джон Мазер. От Большого взрыва — к Космическому телескопу имени Джеймса Вебба и новым Нобелевским премиям. Элементы.ру. Дата обращения: 24 марта 2014. Архивировано 7 февраля 2014 года.

http://www.astronet.ru/db/msg/1171339

http://cosmo.irk.ru/faq.html