Сферическое зеркалоСферическое зеркало — зеркало, отражающая поверхность которого имеет вид сегмента сферы. ОписаниеСферическое зеркало может быть выпуклым или вогнутым — в зависимости от того, какая сторона сегмента сферы — выпуклая или вогнутая — является отражающей. Центр соответствующей сферическому зеркалу сферы называется его центром или оптическим центром, середина сегмента — полюсом зеркала, прямая, проходящая через центр и полюс — главной оптической осью зеркала. Другие прямые, проходящие через центр зеркала и точку, отличную от полюса, называются его побочными оптическими осями. Параксиальные лучи, параллельные главной оптической оси выпуклого сферического зеркала, так же как и продолжения параксиальных лучей, параллельных главной оптической оси вогнутого сферического зеркала, пересекаются в одной точке, называемой его фокусом. Он расположен посередине между центром и полюсом зеркала, то есть расстояние (f) его до зеркала равно половине радиуса (R):
У сферического зеркала, как вообще у любого зеркала, отсутствует хроматическая аберрация, но выражена сферическая аберрация. Сферическая аберрация выражена потому, что в отличие от параболического зеркала (то есть сегмента параболоида вращения), сферическое зеркало может собирать в одной точке лишь параксиальные лучи, то есть те из лучей, параллельных главной оптической оси, которые близки к этой оси. Сферическая аберрация в одном из примеров применения сферического вогнутого зеркала, зеркально-линзовом телескопе системы Дмитрия Максутова, устраняется компенсированием специально подобранной линзой — мениском. Известным примером выпуклого сферического зеркала является ёлочный шар. Построение изображения в сферическом зеркалеПроще всего построить изображение отрезка, перпендикулярного главной оптической оси зеркала и настолько небольшого по высоте, что луч, исходящий из его верхней точки и параллельный главной оптической оси зеркала — параксиальный. Его изображение будет также перпендикулярным главной оптической оси зеркала, расстояние его от зеркала при известном расстоянии от зеркала до предмета и фокусного расстояния зеркала можно вычислить по формуле зеркала. Высота изображения (y') будет равна произведению высоты предмета (y) на отношение расстояния от изображения до зеркала (v) к расстоянию от зеркала до предмета (u):
Для вогнутого сферического зеркалаЕсли сферическое зеркало вогнутое, возможны различные случаи расположения изображения относительно зеркала при различных расстояниях до предмета. Буквой C обозначен центр зеркала, а буквой F — его фокус. При u>f формула зеркала имеет вид:
а при u<f:
Для построения взято три луча (хотя достаточно и двух):
Для выпуклого сферического зеркалаПостроение изображения в выпуклом сферическом зеркале проще, чем в вогнутом: здесь при любом расстоянии предмета до зеркала его изображение будет расположено за зеркалом. На рисунке ниже буквой F обозначен фокус выпуклого зеркала, буквой V — полюс, y (в формуле u) — высота предмета, y' (в формуле v) — высота изображения. Формула зеркала в этом случае имеет вид:
Для построения взято два луча:
Таким образом, верхней точкой изображения будет точка пересечения продолжения первого отражённого луча и продолжения второго отражённого луча. См. такжеЛитература
|