Степенной законВ статистике степенной закон (англ. power law) — это такая функциональная зависимость между двумя величинами, при которой относительное изменение одной величины приводит к пропорциональному относительному изменению другой величины, независимо от исходных значений этих величин: зависимость одной величины от другой представляет собой степенную функцию. Например, рассмотрим зависимость площади квадрата от длины его стороны. Если длина будет увеличена вдвое, то площадь увеличится вчетверо.[1] Примеры из практикиВо многих физических, биологических и искусственных явлениях наблюдаются распределения, приблизительно соответствующие степенному закону в различных масштабах: например, размеры лунных кратеров и солнечных вспышек[2], закономерности питания разных видов[3], активность популяций нейронов[4], частота употребления слов в большинстве языков, распространённость фамилий, число видов в кладах организмов[5], масштабы аварий в энергосистемах, число уголовных обвинений на одного преступника, количество извержений вулканов[6], человеческие оценки интенсивности стимулов[7][8] и многие другие величины[9]. Эмпирические распределения могут соответствовать степенному закону во всём диапазоне своих значений, либо, например, в хвосте. Затухание звуковых колебаний следует степенному закону в широких полосах частот во многих сложных средах. Аллометрические закономерности для отношений между биологическими переменными являются одними из самых известных примеров степенных законов в природе. СвойстваМасштабная инвариантностьДля степенного закона характерна масштабная инвариантность. Если выполняется , то масштабирование аргумента на постоянный коэффициент приведёт к пропорциональному масштабированию самой функции. То есть: где обозначает прямую пропорциональность. Иными словами, умножение аргумента на постоянную величину приводит просто к умножению значения функции на постоянную величину . Таким образом, все степенные законы с заданным показателем степени эквивалентны с точностью до умножения на константу, поскольку все они представляют собой лишь масштабированные версии друг друга. Это порождает линейную зависимость между логарифмами величин и , и прямую линию на графике в двойном логарифмическом масштабе (log-log), которую часто считают характерным признаком степенного закона. В реальных данных это признак является необходимым, но не достаточным, чтобы сделать вывод о наличии степенного закона. Существует много способов сгенерировать конечные объёмы данных, имитирующих соответствие степенному закону, но отклоняющихся от него в асимптотическом пределе (например, если процесс генерации данных следует логнормальному распределению). Проверка моделей на соответствие степенному закону является актуальной областью исследований в статистике, см. ниже. Отсутствие строго определённого среднего значенияСтепенной закон имеет строго определённое среднее значение при , только если , и имеет конечную дисперсию, только если . Для большинства известных степенных законов в природе значения показателя степени таковы, что среднее значение является строго определённым, а дисперсия нет, поэтому для них существует возможность возникновения событий типа «чёрный лебедь».[10] Это можно показать на примере следующего мысленного эксперимента:[11] представьте себя в комнате с друзьями и оцените среднемесячный доход в этой комнате. Теперь представьте, что в эту комнату вошёл самый богатый человек в мире с месячным доходом около 1 миллиарда US$. Как изменится значение среднемесячного дохода в комнате? Распределение доходов следует степенному закону, известному как распределение Парето (например, капиталы американцев распределены по степенному закону с показателем степени 2). С одной стороны, это не позволяет корректно применять традиционную статистику, основанную на дисперсии и среднеквадратическом отклонении (например, регрессионный анализ). С другой стороны, это позволяет осуществлять эффективное по затратам вмешательство.[11] К примеру, пусть выхлопные газы автомобилей распределены по степенному закону среди автомобилей (то есть большинство загрязнений осуществляется очень небольшим числом автомобилей). Тогда будет достаточно убрать с дорог это небольшое число автомобилей, чтобы существенно снизить общее количество выбросов.[12] Медиана существует: для степенного закона x -k с показателем степени она принимает значение 21/(k — 1)xmin, где xmin — это минимальное значение, для которого выполняется степенной закон[13] Проверка на соответствие степенному законуХотя степенной закон привлекателен по многим теоретическим причинам, доказательство того, что данные и в самом деле следуют степенному закону, требует больше, чем простого подбора параметров модели.[14] Важно понимать механизм возникновения распределения: внешне похожие распределения могут возникать по существенно различным причинам, а разные модели дают разные прогнозы, например при экстраполяции.[15][16] См. такжеПримечания
Литература
Ссылки |