Солнцеподобные осцилляции — колебания (осцилляции) в звёздах, возникающие вследствие того же механизма, что и солнечные осцилляции, а именно вследствие турбулентной конвекции во внешних слоях звезды. Колебания представляют собой стоячие моды давления и комбинации давления и гравитации, возникающие в некотором интервале частот и обладающие колоколообразным распределением амплитуд. В отличие от ситуации с создаваемым непрозрачностью механизмом осцилляции, в данной ситуации возникают все моды в данном интервале частот, что способствует более лёгкому обнаружению осцилляций. Конвекция на поверхности также приводит к затуханию мод, каждая из которых может быть представлена в пространстве частот кривой Лоренца, при этом ширина кривой соответствует времени жизни моды колебаний: чем быстрее затухает мода, тем шире кривая Лоренца. Все звёзды с областями поверхностной конвекции, как считается, могут обладать солнцеподобными осцилляциями. Среди таких звёзд можно упомянуть холодные звёзды главной последовательности (с температурой поверхности до примерно 7000 K), субгиганты и красные гиганты. Поскольку амплитуды осцилляций малы, их исследование в основном проводится при наблюдениях на космических аппаратах[1] (в основном, COROT и Kepler).
Данные о солнцеподобных осцилляциях используются для определения масс и радиусов звёзд, обладающих планетами, и также используются при уточнении измерений масс и радиусов планет[2][3].
У красных гигантов наблюдаются смешанные моды, которые чувствительны к свойствам ядра звезды. Данные о таких осцилляциях используются для отделения красных гигантов, в недрах которых идут термоядерные реакции горения гелия, от красных гигантов, находящихся на стадии горения водорода в слоевом источнике[4], для доказательства того, что ядра красных гигантов вращаются медленнее, чем предсказывают модели[5], и для получения ограничений для оценок внутренних магнитных полей в ядрах звёзд[6].
Пик мощности колебаний приходится на более низкие частоты для более крупных звёзд. Для Солнца моды с наибольшими амплитудами располагаются на частоте около 3 мГц при , смешанные моды не наблюдаются. Для более массивных звёзд и более поздних стадий эволюции моды имеют меньший радиальный порядок и в целом меньшие частоты. У звёзд на более поздних стадиях эволюции наблюдаются смешанные моды, которые, в принципе, могут существовать и в звездах главной последовательности, но такие моды должны обладать слишком малыми частотами и малыми амплитудами, поэтому их сложно наблюдать. Считается, что моды давления высокого порядка при данном значении должны быть почти равномерно распределены по частотам, характерные промежутки обозначаются как [9]. Данные выводы свидетельствуют о целесообразности построения эшелле-диаграммы, на которой моды с определенным значением образуют почти вертикальные полосы.
Масштабные соотношения
Частота осцилляции наибольшей мощности, как принято полагать[10], меняется приблизительно с предельной акустической частотой, при превышении которой волны могут распространяться в атмосфере звезды. Таким образом,
Аналогично, примерно пропорционально квадрату плотности:
При имеющейся оценке эффективной температуры данные соотношения позволяют оценить массу и радиус звезды на основе коэффициентов пропорциональности, полученных из данных о Солнце:
Также, если известна светимость звезды, то температуру можно заменить на основе соотношения между светимостью абсолютно чёрного тела, его радиусом и температурой , что даёт выражения
Примеры ярких звёзд с солнцеподобными осцилляциями
↑Davies, G. R.; Aguirre, V. Silva; Bedding, T. R.; Handberg, R.; Lund, M. N.; Chaplin, W. J.; Huber, D.; White, T. R.; Benomar, O.; Hekker, S.; Basu, S.; Campante, T. L.; Christensen-Dalsgaard, J.; Elsworth, Y.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. S.; Metcalfe, T. S.; Stello, D. Oscillation frequencies for 35 Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 2016. — Vol. 456, no. 2. — P. 2183—2195. — doi:10.1093/mnras/stv2593. — Bibcode: 2016MNRAS.456.2183D. — arXiv:1511.02105.