Задача о разрезающем циклы множестве вершин — это следующая задача разрешимости:
Дано: (Неориентированный или ориентированный) граф и положительное число .
Вопрос: Существует ли подмножество , для которого , такой, что с удалёнными вершинами, принадлежащими , не содержит циклов?
Граф , оставшийся после удаления из графа вершин, принадлежащих множеству , является порождённым лесом (для неориентированных графов, или порождённым направленным ациклическим графом для ориентированных графов). Таким образом, поиск минимального разрезающего циклы множества вершин в графе эквивалентен поиску максимального порождённого леса (соответственно, максимального порождённого ациклического графа в случае ориентированных графов).
NP-трудность
Карп[1] показал, что задача о разрезающем циклы множестве вершин для ориентированных графов является NP-полной. Задача остаётся NP-полной для направленных графов с максимальной степенью входящих и исходящих дуг, равной двум, и для ориентированных пленарных графов с максимальной степенью входящих и исходящих дуг, равной трём[2]. Из приведения Карпа также следует NP-полнота задачи о разрезающем циклы множестве вершин на неориентированных графах, и задача остаётся NP-трудной на графах с максимальной степенью четыре. Задача о разрезающем циклы множестве вершин может быть решена за полиномиального времени на графах с максимальной степенью, не превосходящей трёх[3][4].
Соответствующая NP-полная оптимизационная задача нахождения размера минимального разрезающего циклы множества вершин может быть решена за время O(1,7347n), где n — число вершин в графе [5]. Фактически этот алгоритм находит максимальный порождённый лес и дополнение этого леса будет искомым набором вершин. Число минимальных разрезающих циклы множеств вершин ограничено O(1,8638n)[6]. Задача о минимальном разрезающем циклы множестве для ориентированного графа может быть решена за время O*(1,9977n), где n — число вершин в данном ориентированном графе[7]. Параметризованные версии ориентированной и неориентированной задач фиксированно-параметрически разрешимы[англ.][8].
Приближение
Задача является APX-полной, что прямо следует из APX-сложности задачи о вершинном покрытии[9] и существования аппроксимации, сохраняющей L-приведение из задачи о вершинном покрытии к этой задаче[1]. Лучший известный алгоритм для неориентированных графов имеет коэффициент два[10].
Границы
Согласно теореме Эрдёша — Поза размер минимального разрезающего циклы множества вершин ограничен логарифмическим множителем от максимального числа вершинно-непересекающихся циклов в заданном графе[11].
Приложения
В операционных системах разрезающее циклы множество вершин играет заметную роль в обнаружении взаимных блокировок (deadlock). В графе ожидания операционной системы каждый ориентированный цикл соответствует взаимной блокировке. Чтобы выйти из всех взаимных блокировок, некоторые блокированные процессы должны быть прерваны. Минимальное разрезающее циклы множество вершин в графе соответствует минимальному числу процессов, которые следует прервать[12]
Кроме того, разрезающее циклы множество вершин имеет приложение в разработке СБИС[13].
Vineet Bafna, Piotr Berman, Toshihiro Fujito. A 2-approximation algorithm for the undirected feedback vertex set problem // SIAM Journal on Discrete Mathematics. — 1999. — Т. 12, вып. 3. — С. 289–297 (electronic). — doi:10.1137/S0895480196305124..
Yixin Cao, Jianer Chen, Yang Liu. Proc. 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2010), Bergen, Norway, June 21-23, 2010 / Haim Kaplan. — 2010. — Т. 6139. — С. 93–104. — (Lecture Notes in Computer Science). — doi:10.1007/978-3-642-13731-0_10.
Jianer Chen, Yang Liu, Songjian Lu, Barry O'Sullivan, Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem // Journal of the ACM. — 2008. — Т. 55, вып. 5. — doi:10.1145/1411509.1411511.
Fedor V. Fomin, Serge Gaspers, Artem Pyatkin, Igor Razgon. On the minimum feedback vertex set problem: exact and enumeration algorithms. // Algorithmica. — 2008. — Т. 52, вып. 2. — С. 293–307. — doi:10.1007/s00453-007-9152-0.
Fedor V. Fomin, Yngve Villanger. Proc. 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010). — 2010. — Т. 5. — С. 383–394. — (Leibniz International Proceedings in Informatics (LIPIcs)). — doi:10.4230/LIPIcs.STACS.2010.2470.
Richard M. Karp. Proc. Symposium on Complexity of Computer Computations, IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.. — New York: Plenum, 1972. — С. 85–103.
Deming Li, Yanpei Liu. A polynomial algorithm for finding the minimum feedback vertex set of a 3-regular simple graph // Acta Mathematica Scientia. — 1999. — Т. 19, вып. 4. — С. 375–381.
I. Razgon. Proceedings of the 10th Italian Conference on Theoretical Computer Science / Giuseppe F. Italiano, Eugenio Moggi, Luigi Laura. — World Scientific, 2007. — С. 70–81.
Shuichi Ueno, Yoji Kajitani, Shin'ya Gotoh. On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three // Discrete Mathematics. — 1988. — Т. 72, вып. 1—3. — С. 355–360. — doi:10.1016/0012-365X(88)90226-9.
Учебники и обзорные статьи
P. Festa, P. M. Pardalos, M.G.C. Resende. Handbook of Combinatorial Optimization, Supplement vol. A / D.-Z. Du, P. M. Pardalos. — Kluwer Academic Publishers, 2000. — С. 209–259.