Переходный процессПерехо́дный проце́сс — в теории систем представляет собой изменения координат динамической системы во времени до некоторого установившегося состояния; возникает под влиянием возмущающих воздействий, изменяющих её состояние, структуру или параметры, а также вследствие ненулевых начальных условий[B: 1]. ХарактеристикиИзучение переходных процессов — важный шаг в процессе анализа динамических свойств и качества рассматриваемой системы. Широкое применение нашло экспериментальное и аналитическое определение и построение переходных процессов для наиболее неблагоприятных условий работы динамической системы при внешних возмущениях типа дельта-функции, ступенчатом или синусоидальных воздействиях[B: 1][B: 2]. Оценка качества САУ по виду кривой переходного процесса производится при помощи так называемых прямых показателей качества — перерегулирования, допустимого числа колебаний и времени переходного процесса. Обычно рассматривают переходный процесс, возникающий в системе при воздействии единичной ступенчатой функции, т. е. переходная функция замкнутой системы[1]. Время переходного процессаДлительность переходного процесса в системе характеризует её быстродействие, а его характер определяет качество системы. За количественную характеристику длительности переходного процесса принимают время, необходимое выходному сигналу системы для того, чтобы приблизиться к своему установившемуся значению, т. е. время, по истечении которого выполняется равенство:
В приложениях теории управления обычно в САУ принимают равной 0,01—0,05 от , т. е. переходный процесс считают закончившимся, когда переходная функция отличается не более, чем на 1–5 % от своего установившегося (стационарного) значения[1]. ПеререгулированиеПеререгулирование (определяется величиной первого выброса) — отношение разности максимального значения переходной характеристики и её установившегося значения к величине установившегося значения. Измеряется обычно в процентах. Степень затухания переходного процессаСтепень затухания переходного процесса определяется относительным уменьшением соседних амплитуд переходной характеристики[B: 3]. Числителем является амплитуда первого колебания. Степень затухания показывает во сколько раз уменьшается амплитуда второго колебания по сравнению с первым. Степень затухания системы зависит от показателя колебательности (см. ниже). Логарифмический декремент колебанияЛогарифмический декремент колебания — натуральный логарифм отношения амплитуд двух соседних перерегулирований. Обратная ему величина показывает, за какое число колебаний их амплитуда уменьшается в раз ( — основание натуральных логарифмов). Уместен лишь для характеристики линейных систем[B: 4]. КолебательностьХарактеризует склонность системы к колебаниям и определяется как модуль отношения амплитуд второго колебания к амплитудам первого колебания. Колебательность системы характеризуют при помощи показателя колебательности , который представляет собой отношение резонансного пика при резонансной частоте к значению АЧХ при нулевой частоте[2]. Показатель колебательности связан со степенью колебательности формулой: При увеличении , уменьшается показатель колебательности и соответственно происходит уменьшение степени колебательности. Установившаяся ошибкаУстановившаяся ошибка системы — разница между предполагаемым и реальным значением выходного сигнала при времени, стремящемся к бесконечности. В идеальных астатических системах установившаяся ошибка равна нулю. ПримерыЭлектрические цепиВ электрической цепи переходный процесс характеризуется плавным инерционным изменением тока и напряжения в цепи в ответ на приложенное внешнее воздействие[B: 5]. Формула, описывающие протекание простейших переходных процессов (разряд конденсатора через резистор):
Для цепей, содержащих индуктивность, если можно пренебречь активным сопротивлением, постоянная времени равна: См. также
ПримечанияЛитератураКниги
|