Модель ФитцХью — НагумоМоде́ль ФитцХью́ — Нагу́мо — математическая модель, названая в честь Ричарда ФитцХью (1922—2007), в 1961 году опубликовавшего[A: 1][B: 1] соответствующую систему дифференциальных уравнений под названием модель Бонхёффера — ван дер Поля, и Д. Нагумо (1926—1999)[1], в следующем году предложившего аналогичную систему уравнений. Формальное определениеИзначально была получена[A: 1] как результат обобщения уравнения ван дер Поля и модели, предложенной немецким химиком Карлом-Фридрихом Бонхёффером. При помощи общепринятого преобразования Льенара[A: 2]: ФитцХью переписал модель ван дер Поля в нормальной форме Коши: Далее, путём добавления новых членов, Р. ФитцХью получает систему обыкновенных дифференциальных уравнений, которую он обозначил как «модель Бонхёффера — ван дер Поля» (в оригинале: the Bonhoeffer-van der Pol model (BVP for short): где . Для частного случая данная модель вырождается в осциллятор Ван дер Поля. В 1991 г. Артур Уинфри[англ.][A: 3] провёл исследование этой модели для случая двумерной среды, а также предложил классификацию вариантов записи этой модели разными авторами научных статей. Вариант записи модели, предложенный Р. ФитцХью,[A: 1] соответствует формату 1, по А.Винфри. В формате 4[A: 4] её можно переписать как В канонической форме она записывается[A: 4] как
С моделью Бохоффера—ван дер Поля, которую сам Р. ФитцХью представил в 1961 г., модель ФитцХью — Нагумо, обычно используемая в биологических науках, совпадает с точностью до знаков. В традициях моделирования физиологических процессов эта динамическая система записывается как: где — безразмерная функция, аналогичная трансмембранному потенциалу в биологической возбудимой ткани, и — безразмерная функция, аналогичная медленному току восстановления. При определённом сочетании параметров системы уравнений наблюдается ответ по принципу «всё или ничего»: если внешний стимул превышает определенное пороговое значение, система будет демонстрировать характерное возвратно-поступательное движение (экскурсию) в фазовом пространстве, до тех пока переменные и не «релаксируют» до предыдущего состояния. Такое поведение характерно для спайков, возбуждённых в нейроне стимуляцией внешним входным сигналом. Динамика этой системы может быть описана, как переключение между левой и правой ветвью кубической нуль-изоклины. Значение в наукеЭта модель является примером сингулярно возмущённых систем[B: 2] и в ней возникают релаксационные колебания. В то время как уравнение (и соответствующая система) ван дер Поля является концептуальной моделью предельного цикла, уравнение (и соответствующая система) Бонхёффера — ван дер Поля классифицируется как концептуальная модель автоволновых процессов. На её основе создано большое количество предметных, формально—кинетических, моделей химических и биологических колебательных систем. Широко используется в качестве «базовой модели для большого числа биофизических проблем».[2] Роль в физиологииВ физиологии используется в качестве концептуальной математической модели поведение возбудимой ткани (например, нейрона). Модель ФитцХью — Нагумо можно рассматривать как упрощенную версию модели Ходжкина — Хаксли, которая довольно детально объясняет динамику активации и деактивации пульсирующего нейрона. Бифуркационные феномены задержки и памятиВысказано предположение[A: 4], что наиболее ранними наблюдениями «бифуркационной памяти» следует считать описанные в 1961 году ФитцХью[A: 1] явления»: некоторая часть фазовых траекторий движется вдоль сепаратрисы. ФитцХью их обозначает словами «квазипороговые феномены», подчёркивая тем самым то обстоятельство, что полученные в его экспериментах результаты существенно отличались от тех, которые обычно наблюдались в экспериментальных работах по физиологии возбудимых тканей и которые были обозначены физиологами как «пороговый эффект» или ответ по принципу «всё или ничего». Дополнительные результаты исследования бифуркационных явлений задержки и памяти в системе ФитцХью — Нагумо были опубликованы в 1989 году.[A: 5] См. такжеПримечания
ЛитератураКниги
Статьи
Дополнительная литература
Ссылки
|