Множитель Ланде

Множитель Ланде (гиромагнитный множитель, иногда тж. g-фактор) — множитель в формуле для расщепления уровней энергии в магнитном поле, определяющий масштаб расщепления в относительных единицах. Частный случай более общего g-фактора.

Поведение атома в магнитном поле

Множитель Ланде определяется по формуле

где L — значение орбитального момента атома, S — значение спинового момента атома, J — значение полного момента. Эта формула справедлива в случае LS-связи, то есть для лёгких атомов. Впервые он был введён немецким физиком А. Ланде в 1921 году при исследовании спектра испускания атомов, помещённых в магнитное поле. Работы Ланде являлись продолжением работ П. Зеемана, поэтому эффект, продемонстрированный в эксперименте Ланде, называют аномальным эффектом Зеемана. При этом Зееман считал L=J, S=0, а потому g=1, и никакой надобности в множителях не возникало. Множитель Ланде определяет относительную величину магнитомеханического отношения.[1]

Анизотропия

В многоэлектронных атомах становится важным взаимодействие спинового и орбитального механического моментов. LS-связь приводит к расщеплению спектра свободного атома и влиянию симметрии кристаллической решётки на спины в атомах твёрдого тела. Для аналитического учёта спин-орбитальное взаимодействие и вклад взаимодействия с магнитным полем рассматривают как возмущение в форме

,

где ξ — константа спин-орбитальной связи, L — оператор механического момента, S — оператор спина,  — магнетон Бора, H — напряжённость магнитного поля. В связи с тем, что основное состояние не вырождено, среднее значение механического момента для него равно нулю:

Поэтому в первом порядке теории возмущений прибавка к энергии определяется только взаимодействием с магнитным полем:

Второй порядок теории возмущений приводит к поправке вида

Здесь , а индексы μ и ν пробегают пространственные координаты x, y, z. С учётом поправок гамильтониан невырожденного основного состояния принимает вид

где δμν — символ Кронекера. В нём первое слагаемое является зеемановской энергией, а

являет собой выражение для множителя Ланде с учётом анизотропии, вносимой спин-орбитальным взаимодействием. Второе слагаемое в гамильтониане соответствует так называемой одноионной анизотропии, а третье является следствием теории возмущений второго порядка и даёт парамагнитную восприимчивость не зависимую от температуры (парамагнетизм ван Флека).[2]

См. также

Примечания

  1. Ландау, Лифшиц III, 2004, с. 561—565.
  2. Yosida, 1996, pp. 34—37.

Литература

  • Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория) // Курс теоретической физики / Под ред. Д. А. Миртовой. — 6-е изд., испр. — М.: ФИЗМАТЛИТ, 2004. — Т. III. — 800 с. — ISBN 5-9221-0530-2.
  • Kei Yosida. Theory of magnetism. — Springer, 1996. — 320 p. — ISBN 9783540606512.

Ссылки

  • Vienna Atomic Line Database (VALD) (англ.). — База данных параметров различных ионов, включая значения множителя Ланде. Дата обращения: 8 сентября 2015.