Искривлённое произведение римановых, а также псевдоримановых многообразий — обобщение прямого произведения.
Определение
Пусть и — два псевдоримановых многообразия
и гладкая положительная функция.
Тогда произведение с метрикой называется искривлённым произведением и по функции . Точнее, касательное пространство можно идентифицировать с произведением касательных пространств и значит на нём можно рассмотреть прямую сумму квадратичных форм , она и определяется как метрический тензор в точке.
Искривлённое произведение обычно обозначается .
Функция также называется функцией искривления.
Пространство называется базой, а пространство — слоем искривлённого произведения .
Свойства
- Каждый слой в изометричен .
- Каждый уровень глобально изометричен базе .
- Расстояния между точками полностью определяются по базе , двум точкам , функцией и расстоянием между и в слое .
Примеры
- Искривлённое произведение изометрично плоскости Лобачевского.
- Поверхность вращения всегда изометрична искривлённому произведению для некоторой функции искривления и вещественного интервала .
- Многие решения уравнения Эйнштейна, можно представить как искривлённые произведения, например,
Вариации и обобщения
Примечания
- ↑ S. B. Alexander, R. L. Bishop. Curvature bounds for warped products of metric spaces // Geometric & Functional Analysis GAFA. — 2004. — Т. 14, № 6. — С. 1143—1181.
Ссылки