Задача со счастливым концом — утверждение о том, что любое множество из пяти точек на плоскости в общем положении[1] имеет подмножество из четырёх точек, которые являются вершинами выпуклогочетырёхугольника.
Обобщения результата на произвольное число точек являются предметом интереса математиков XX и XXI веков.
Доказательство
Если не менее четырёх точек образуют выпуклую оболочку, в качестве выпуклого четырёхугольника можно выбрать любой набор из четырёх точек оболочки. В противном случае имеется треугольник и две точки внутри него. Прямая, проходящая через две внутренние точки, в силу общего положения точек не пересекает одну из сторон треугольника. Вершины этой стороны и две внутренние точки образуют выпуклый четырёхугольник.
Многоугольники с произвольным числом вершин
Эрдёш и Секереш обобщили этот результат на произвольное число точек, что является оригинальным развитием теории Рамсея. Они также выдвинули «гипотезу Эрдёша — Секереша» — точную формулу для максимального числа вершин выпуклого многоугольника, обязательно существующего в множестве из заданного числа точек в общем положении.
В (Erdős & Szekeres 1935) доказано следующее обобщение: для любого натурального , всякое достаточно большое множество точек в общем положении на плоскости имеет подмножество точек, которые являются вершинами выпуклого многоугольника. Это доказательство появилось в той же статье, где доказывается теорема Эрдёша — Секереша о монотонных подпоследовательностях в числовых последовательностях.
Размер множества как функция числа вершин многоугольника
Пусть означает минимальное , для которого любое множество из точек в общем положении содержит выпуклый -угольник. Известно, что:
, очевидно.
, доказала Эстер Секереш.
, согласно (Erdős & Szekeres 1935), это первым доказал Э. Макаи; первое опубликованное доказательство появилось в (Kalbfleisch, Kalbfleisch & Stanton 1970). Множество из восьми точек, не содержащее выпуклый пятиугольник, на иллюстрации показывает, что ; сложнее доказать, что любое множество из девяти точек в общем положении содержит выпуклый пятиугольник.
, это было доказано в (Szekeres & Peters 2006). В работе реализован сокращённый компьютерный перебор возможных конфигураций из 17 точек.
Значения неизвестны для .
Гипотеза Эрдёша — Секереша о минимальном числе точек
Исходя из известных значений для , Эрдёш и Секереш предположили, что:
для всех .
Эта гипотеза не доказана, но известны оценки сверху и снизу.
Оценки скорости роста f(N)
Конструктивным построением авторы гипотезы сумели позднее доказать оценку снизу, совпадающую с гипотетическим равенством:
Интересен также вопрос о том, содержит ли достаточно большое множество точек в общем положении пустой выпуклый четырёхугольник, пятиугольник, и так далее.
То есть многоугольник, не содержащий внутренних точек.
Если внутри четырёхугольника, существующего согласно теореме со счастливым концом, есть точка, то, соединив эту точку с двумя вершинами диагонали, мы получим два четырёхугольника, один из которых выпуклый и пустой.
Таким образом, пять точек в общем положении содержат пустой выпуклый четырёхугольник, как видно на иллюстрации.
Любые десять точек в общем положении содержит пустой выпуклый пятиугольник (Harborth 1978).
Однако существуют сколь угодно большие множества точек в общем положении, которые не содержат пустой выпуклый семиугольник.(Horton 1983)
Таким образом, задача о пустых многоугольниках не является проблемой теории Рамсея и в принципе решена.
Вопрос о существовании пустого шестиугольника долгое время оставался открытым.
Но сначала в (Nicolás 2007) и (Gerken 2008) было доказано, что всякое достаточно большое множество точек в общем положении содержит пустой шестиугольник, потом оценку сверху довели до f(9) (предположительно 129), а оценку снизу — до 30 точек.(Overmars 2003).
И, наконец, в 2024 году получен окончательный результат — 30-точечная конфигурация обязательно содержит пустой шестиугольник.
Примечания
↑В данном контексте общее положение означает, что никакие три точки не лежат на одной прямой.
Erdős, P.; Szekeres, G. (1961), "On some extremum problems in elementary geometry", Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3—4: 53—62. Reprinted in: Erdős, P. (1973), Spencer, J. (ed.), The Art of Counting: Selected Writings, Cambridge, MA: MIT Press, pp. 680—689.
Gerken, Tobias (2008), "Empty convex hexagons in planar point sets", Discrete and Computational Geometry, 39 (1—3): 239—272, doi:10.1007/s00454-007-9018-x.
Kalbfleisch, J.D.; Kalbfleisch, J.G.; Stanton, R.G. (1970), "A combinatorial problem on convex regions", Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 1, Baton Rouge, La.: Louisiana State Univ., pp. 180—188.
Kleitman, D.J.; Pachter, L. (1998), "Finding convex sets among points in the plane", Discrete and Computational Geometry, 19 (3): 405—410, doi:10.1007/PL00009358.
Scheinerman, Edward R.; Wilf, Herbert S. (1994), "The rectilinear crossing number of a complete graph and Sylvester's "four point problem" of geometric probability", American Mathematical Monthly, 101 (10), Mathematical Association of America: 939—943, doi:10.2307/2975158, JSTOR2975158.
Tóth, G.; Valtr, P. (1998), "Note on the Erdős-Szekeres theorem", Discrete and Computational Geometry, 19 (3): 457—459, doi:10.1007/PL00009363.
Tóth, G.; Valtr, P. (2005), "The Erdős-Szekeres theorem: upper bounds and related results", Combinatorial and computational geometry, Mathematical Sciences Research Institute Publications, no. 52, pp. 557—568.