Глубокая сеть доверия
Глубокая сеть доверия (ГСД, англ. deep belief network, DBN) — это порождающая графическая модель, или один из типов глубинных нейронных сетей, состоящая из нескольких скрытых слоёв, в которых нейроны внутри одного слоя не связаны друг с другом, но связаны с нейронами соседнего слоя[1]. При обучении на наборе примеров[en] спонтанным образом ГСД может обучаться как вероятностно отстраивать свои входы. Слои в этом случае выступают в роли детекторов признаков входов[1]. По окончании обучения ГСД может быть обучена с учителем для осуществления классификации[2]. ГСД можно рассматривать как композицию простых, спонтанных сетей, таких как ограниченные машины Больцмана (ОМБ)[1] или автокодировщики[3], в которых скрытый слой каждой подсети служит видимым слоем для следующей. Это позволяет осуществить быструю послойную процедуру обучения без учителя, в которой относительное расхождение применяется к каждой подсети по очереди, начиная с первой пары слоёв (на видимый слой которой подается тренировочный набор примеров[en]). Наблюдение, сделанное англ. Yee-Whye Teh, учеником Джеффри Хинтона[2], говорит о том, что ГСД может быть обучена способом жадного послойного обучения, что стало одним из первых действенных алгоритмов глубинного обучения[4]:6:6. Алгоритм обученияАлгоритм тренировки ГСД работает следующим образом[2]. Пусть будет матрицей входов, что рассматривается как набор признаков.
См. такжеПримечания
Ссылка
|