Гауссова функцияГауссова функция (гауссиан, гауссиана, функция Гаусса) — вещественная функция, описываемая следующей формулой:
где параметры — произвольные вещественные числа. Введена Гауссом в 1809 году как функция плотности нормального распределения, и наибольшее значение имеет в этом качестве, в этом случае параметры выражаются через среднеквадратическое отклонение и математическое ожидание :
График гауссовой функции при и — колоколообразная кривая, параметр определяет максимальную высоту графика — пик колокола, отвечает за сдвиг пика от нуля (при — пик в нуле), а влияет на ширину (размах) колокола. Существуют многомерные обобщения функциитеории вероятностей, статистике и других многочисленных приложениях как функции плотности нормального распределения, гауссиана имеет самостоятельное значение в математическом анализе, математической физике, теории обработки сигналов. . Кроме применений вСвойстваСвойства гауссовой функции связаны с её конструкцией из экспоненциальной функции и вогнутой квадратичной функции, логарифм гауссианы — вогнутая квадратичная функция. Параметр связан с полушириной колокола графика следующим образом:
Гауссова функция может быть выражена через полуширину колокола графика следующим образом:
Перегибы — две точки, в которых . Гауссова функция аналитична, в пределе к обеим бесконечностям стремится к нулю:
Будучи составленной из экспоненциальной функции и арифметических операций, гауссиана является элементарной, однако её первообразная неэлементарна; интеграл гауссовой функции: — это (с точностью до постоянного множителя) — функция ошибок, являющаяся спецфункцией. При этом интеграл по всей числовой прямой (в связи со свойствами экспоненциальной функции) — константа[1]:
Этот интеграл обращается в единицу только при условии:
и это даёт в точности тот случай, когда гауссиана является функцией плотности нормального распределения случайной переменной с математическим ожиданием и дисперсией . Произведение гауссиан — гауссова функция; свёртка двух гауссовых функций даёт гауссову функцию, притом параметр свёртки выражается из соответствующих параметров входящих в неё гауссиан: . Произведение двух функций плотности нормального распределения, являясь гауссовой функцией, в общем случае не дает функцию плотности нормального распределения. Многомерные обобщенияПример двумерного варианта гауссовой функции:
здесь задаёт высоту колокола, определяют сдвиг пика колокола от нулевой абсциссы, а отвечают за размах колокола. Объём под такой поверхностью: В наиболее общей форме, двумерная гауссиана определяется следующим образом:
где матрица: Вариант гауссовой функции в -мерном евклидовом пространстве:
где — вектор-столбец из компонентов, — положительно определённая матрица размера , и — операция транспонирования над . Интеграл такой гауссовой функции над всем пространством :
Возможно определить -мерный вариант и со сдвигом:
где — вектор сдвига, а матрица — симметричная () и положительно определённая. Супергауссова функцияСупергауссова функция — обобщение гауссовой функции, в которой аргумент экспоненты возводится в степень :
получившая применение для описания свойств гауссовых пучков[2]. В двумерном случае супергауссова функция может быть рассмотрена с различными степенями по аргументам и [3]:
ПримененияОсновное применение гауссовых функций и многомерных обобщений — в роли функции плотности вероятности нормального распределения и многомерного нормального распределения. Самостоятельное значение функция имеет для ряда уравнений математической физики, в частности, гауссианы являются функциями Грина для уравнения гомогенной и изотропной диффузии (соответственно, и для уравнения теплопроводности), и преобразование Вейерштрасса — операция свёртки обобщённой функции, выражающей начальные условия уравнения, с гауссовой функцией. Также гауссиана является волновой функцией основного состояния квантового гармонического осциллятора. В вычислительной химии для определения молекулярных орбиталей используются так называемые гауссовы орбитали[англ.] — линейные комбинации гауссовых функций. Гауссовы функции и их дискретные аналоги (такие, как дискретное гауссово ядро[англ.]) используются в цифровой обработке сигналов, обработке изображений, синтезе звука[4]; в частности, через гауссианы определяются гауссов фильтр и гауссово размытие[англ.]. В определении отдельных видов искусственных нейронных сетей также участвуют гауссовы функции. Примечания
Литература
Ссылки
|