Ацетил-КоА-карбоксилаза (ACC) (Шифр КФ6.4.1.2) — биотинзависимыйфермент, катализирующий необратимое карбоксилированиеацетил-КоА с образованием малонил-КоА благодаря двум каталитическим активностям: биотинкарбоксилазной (BC) и карбоксилтрансферазной (CT). У большинства прокариот и в хлоропластах большинства растений и водорослей ACC является ферментом с несколькими субъединицами. В цитоплазме большинства эукариот АСС является крупным многодоменным ферментом. Наиболее важной функцией ACC является обеспечение субстрата малонил-КоА для биосинтеза жирных кислот[1] Активность ACC может контролироваться на уровне транскрипции, а также с помощью модуляторов малых молекул и ковалентной модификации. Геном человека содержит гены для двух разных АСС[2]—ACACA[3] и ACACB[4].
Прокариоты и растения имеют мультисубъединичную АСС, состоящую из нескольких полипептидов. Активность биотинкарбоксилазы (BC), белка-носителя карбоксила биотина (BCCP) и карбоксилтрансферазы (CT), сосредоточена в каждой отдельной субъединице. Стехиометрия этих субъединиц в холоферменте ACC различается у разных организмов[1]. Люди и большинство эукариот развили ACC с каталитическими доменами CT и BC и доменами BCCP на единственном полипептиде. Большинство растений также имеют эту гомомерную форму в цитозоле[5]. Функциональные области ACC, начинающиеся от N-конца до C-конца, представляют собой биотинкарбоксилазу (BC), связывающую биотин (BB), карбоксилтрансферазу (CT) и АТФ-связывающий мотив (AB). AB находится внутри BC. Биотин ковалентно присоединен через амидную связь к длинной боковой цепи лизина, находящегося в ВВ. Поскольку BB находится между участками BC и CT, биотин может легко перемещаться в оба активных центра, где это необходимо.
У млекопитающих, экспрессирующих две изоформы ACC, основным структурным различием между этими изоформами является удлиненный N-конец ACC2, содержащий митохондриальную целевую последовательность[1].
Кристаллографические структуры ацетил-КоА-карбоксилазы "E. coli"
Полипептиды, составляющие мультисубъединичные АСС прокариот и растений, кодируются разными генами. У Escherichia coliaccA кодирует альфа-субъединицу ацетил-КоА-карбоксилазы[6] а accD кодирует её бета-субъединицу[7].
Механизм
Общая реакция ACAC (A, B) протекает по двухступенчатому механизму[8]. Первая реакция осуществляется BC и включает АТФ-зависимое карбоксилирование биотинабикарбонатом, служащим источником CO2. Карбоксильная группа переносится от биотина к ацетил-КоА с образованием малонил-КоА во второй реакции, которая катализируется CT.
В активном центре реакция протекает при обширном взаимодействии остатков Glu296 и положительно заряженных Arg338 и Arg292 с субстратами[9]. Два Mg2+ координируются фосфатными группами на АТФ и необходимы для связывания АТФ с ферментом. Бикарбонат депротонируется Glu296, хотя в растворе этот перенос протона маловероятен, поскольку pKa бикарбоната составляет 10,3. Фермент, по-видимому, манипулирует pKa, чтобы облегчить депротонирование бикарбоната. PKa бикарбоната снижается за счет его взаимодействия с положительно заряженными боковыми цепями Arg338 и Arg292. Кроме того, Glu296 может взаимодействовать с боковой цепью Glu211, тем самым вызывая увеличение pKa. После депротонирования бикарбоната кислород бикарбоната действует как нуклеофил и атакует гамма-фосфат на АТФ. Промежуточный карбоксифосфат быстро разлагается до CO2 и PO43-. PO43- депротонирует биотин, создавая енолят, стабилизированный Arg338, который впоследствии атакует CO2, что приводит к образованию карбоксибиотина. Карбоксибиотин перемещается в активный центр карбоксилтрансферазы (СТ), где карбоксильная группа переносится на ацетил-КоА. В отличие от домена BC, о механизме реакции CT известно немного. Предлагаемый механизм — это высвобождение CO2 из биотина, который впоследствии отрывает протон от метильной группы от ацетил-CoA-карбоксилазы. Полученный енолят атакует CO2 с образованием малонил-КоА. В конкурирующем механизме отрыв протона согласован с атакой ацетил-КоА.
Функция
Функция ACC — регуляция метаболизма жирных кислот. Когда фермент активен, образуется продукт малонил-КоА, который является строительным блоком для новых жирных кислот и может ингибировать перенос жирной ацильной группы от ацил-КоА к карнитину с помощью карнитинацилтрансферазы, которая ингибирует бета-окисление жирные кислоты в митохондриях.
У млекопитающих экспрессируются две основные изоформы ACC, ACC1 и ACC2, которые различаются как распределением в тканях, так и функцией. ACC1 находится в цитоплазме всех клеток, но его концентрация повышена в липогенных тканях, такими как жировая ткань и лактирующие молочные железы, где важен синтез жирных кислот[10]. В окислительных тканях, таких как скелетные мышцы и сердце, соотношение экспрессируемого АСС2 выше. И ACC1, и ACC2 высоко экспрессируются в печени, где важны как окисление, так и синтез жирных кислот[11]. Различия в распределении тканей указывают на то, что ACC1 поддерживает регуляцию синтеза жирных кислот, тогда как ACC2 в основном регулирует окисление жирных кислот (бета-окисление).
Митохондриальная изоформа ACC1 (mtACC1) играет частично дублирующую роль в биосинтезе липоевой кислоты и, следовательно, в липоилировании белков, обеспечивая малонил-КоА для митохондриального синтеза жирных кислот (mtFASII) в тандеме с ACSF3[12][13].
Регуляция
Регуляция ACC млекопитающих сложна, она контролирует два различных пула малонил КоА, которые направляются либо на ингибирование бета-окисления, либо на активацию биосинтеза липидов[14].
ACC1 и ACC2 млекопитающих регулируются транскрипционно множеством промоторов, которые опосредуют изобилие ACC в ответ на состояние питания клеток. Активация экспрессии генов через разные промоторы приводит к альтернативному сплайсингу; однако физиологическое значение конкретных изоферментов ACC остается неясным[11]. Чувствительность к статусу питания является результатом контроля этих промоторов факторами транскрипции, такими как белок 1, связывающий регуляторный элемент стерола, контролируемый инсулином на уровне транскрипции, и ChREBP, экспрессия которого увеличивается при диете с высоким содержанием углеводов[15][16].
Через петлю прямой связи цитраталлостерически активирует АСС[17]. Цитрат может увеличить полимеризацию АСС для увеличения ферментативной активности; однако неясно, является ли полимеризация основным механизмом цитрата увеличения активности АСС или полимеризация является артефактом экспериментов in vitro. Другие аллостерические активаторы включают глутамат и другие дикарбоновые кислоты[18]. Длинноцепочечные и короткоцепочечные жирные ацил-КоА являются ингибиторами АСС с отрицательной обратной связью[19].
Фосфорилирование может происходить, когда гормоны глюкагон или адреналин связываются с рецепторами клеточной поверхности, но основная причина фосфорилирования связана с повышением уровня АМФ при низком энергетическом статусе клетки, что приводит к активации АМФ-активируемой протеинкиназы. (AMPK). AMPK является основным регулятором киназы ACC, способным фосфорилировать ряд сериновых остатков на обеих изоформах ACC[20]. На ACC1 AMPK фосфорилирует Ser79, Ser1200 и Ser1215. Протеинкиназа А также обладает способностью фосфорилировать АСС с гораздо большей способностью фосфорилировать АСС2, чем АСС1. Однако физиологическое значение протеинкиназы A в регуляции ACC в настоящее время неизвестно. Исследователи предполагают, что существуют другие киназы ACC, важные для его регуляции, поскольку существует множество других возможных сайтов фосфорилирования на ACC[21].
Когда инсулин связывается со своими рецепторами на клеточной мембране, он активирует фермент фосфатазу, называемый протеинфосфатазой 2A (PP2A), для дефосфорилирования фермента; тем самым снимая ингибирующий эффект. Кроме того, инсулин индуцирует фосфодиэстеразу, которая снижает уровень цАМФ в клетке, таким образом ингибируя PKA, а также напрямую ингибирует AMPK.
На стыке путей синтеза и окисления липидов ACC представляет множество клинических возможностей для производства новых антибиотиков и разработки новых методов лечения диабета, ожирения и других проявлений метаболического синдрома[23]. Исследователи стремятся использовать структурные различия между бактериальными и человеческими ACC для создания антибиотиков, специфичных для бактериальных ACC, чтобы минимизировать побочные эффекты для пациентов. Многообещающие результаты в отношении полезности ингибитора АСС включают открытие, что мыши без экспрессии АСС2 имеют непрерывное окисление жирных кислот, снижение массы жира и уменьшение массы тела, несмотря на увеличение потребления пищи. Эти мыши также защищены от диабета[14]. Недостаток ACC1 у мутантных мышей летален уже на эмбриональной стадии. Однако неизвестно, должны ли лекарственные средства, нацеленные на ACC у людей, быть специфичными для ACC2[24].
Фирсокостат (ранее GS-976, ND-630, NDI-010976) является мощным аллостерическим ингибитором ACC, действующим на BC-домен ACC[25]. Фирсокостат разрабатывается фармацевтической компанией Gilead в 2019 году (фаза II)[26] как часть комбинированного лечения неалкогольного стеатогепатита (НАСГ), который, как считается, является все более частой причиной печеночной недостаточности[27].
Кроме того, селективные к растениям ингибиторы ACC широко используются в качестве гербицидов[28] что предполагает клиническое применение против паразитов Apicomplexa, которые зависят от изоформы ACC растительного происхождения[29], включая малярию.
Гетерогенные клинические фенотипы метаболического заболевания комбинированной малоновой и метилмалоновой ацидурии (CMAMMA), вызванного дефицитом ACSF3, как полагают, являются результатом частичной компенсации митохондриальной изоформы ACC1 (mtACC1) за недостаток ACSF3 в митохондриальном синтезе жирных кислот (mtFASII)[30].
↑Al-Khatib, Kassim.Acetyl CoA Carboxylase (ACCase) Inhibitors (неопр.). Herbicide Symptoms. Division of Agriculture and Natural Resources, University of California, Davis. Дата обращения: 8 июля 2021. Архивировано 12 июля 2021 года.