Teorema de Pascal
Em geometria projetiva, o teorema de Pascal (formulado por Blaise Pascal quando tinha apenas 16 anos de idade) determina que num hexágono inscrito em uma cónica, as retas que contiverem os lados opostos interceptam-se em pontos colineares, ou seja se os seis vértices de um hexágono estão situados sobre uma circunferência e os três pares de lados opostos se intersectam, os três pontos de intersecção são colineares. É uma generalização do Teorema de Papo. O teorema de Pascal foi generalizado por Möbius em 1847 da seguinte forma: supondo um polígono com 4n + 2 lados inscrito numa secção cónica, os pares de lados opostos estendidos até se encontrarem em 2n + 1 pontos, então se 2n de tais pontos forem colineares, o último ponto estará também sobre essa linha.
|