A bissetriz (AO 1945: bissectriz) é o lugar geométrico dos pontos que equidistam de duas retas concorrentes e, por consequência, divide um ângulo em dois ângulos congruentes.[1]
Tipos de bissetriz
Existem dois tipos de bissetriz:
A bissetriz interna - que é a bissetriz do próprio ângulo
A bissetriz externa - que é a bissetriz do ângulo formado por uma semi-reta que compõe o ângulo e pela semi-reta oposta à outra semi-reta, ou em outras palavras, é a bissetriz do ângulo suplementar a este.
Um triângulo possui dois tipos de bissetrizes: bissetrizes internas e bissetrizes externas.
As três bissetrizes internas do triângulo são concorrentes, e o ponto de encontro delas é o incentro, que é o centro da circunferência inscrita no triângulo, e este ponto também é equidistante de todos os lados do triângulo.
É sabido também que duas bissetrizes externas de dois vértices diferentes, junto com a bissetriz interna do terceiro vértice do triângulo também são concorrentes e se encontram no exincentro dele, que é tangente a um lado do triângulo e aos prolongamentos dos outros dois lados deste triângulo.
Teorema da bissetriz interna
O teorema da bissetriz interna diz que, dado um triângulo ABC, fazendo-se uma bissetriz interna do ângulo A que determina sobre o segmento BC um ponto D, tem-se que os segmentos BD e CD formados por este ponto são diretamente proporcionais aos lados AB e AC,respectivamente. Em outras palavras, tendo um triângulo ABC, partindo uma bissetriz de A, e sendo D a intersecção entre a bissetriz e o lado BC, tem-se que:
Teorema da bissetriz externa
O teorema da bissetriz externa diz que, dado um triângulo ABC, fazendo-se uma bissetriz externa do ângulo A que determina sobre a reta do segmento BC um ponto H, tem-se que os segmentos BH e CH formados por este ponto são diretamente proporcionais aos lados AB e AC,respectivamente.
Em outras palavras, tendo um triângulo ABC, partindo uma bissetriz externa de A, e sendo H a intersecção entre a bissetriz e a reta do lado BC, tem-se que:
Referências
↑Putnoki, José Carlos (1990). Elementos de geometria e desenho geométrico. [S.l.]: Scipione. Vol. 1
Bibliografia
Braga, Theodoro - Desenho linear geométrico. Ed. Cone, São Paulo: 1997.
Carvalho, Benjamim - Desenho Geométrico. Ed. Ao Livro Técnico, São Paulo: 1982.