Bolvormige Aarde Zie ook Vorm van de Aarde
De Griekse filosoof en wiskundige Pythagoras (ongeveer 570 v.Chr. – ongeveer 500 v.Chr.) had al het begrip van een bolvormige Aarde. Waarschijnlijk omdat hij een bol mooi vond en meende dat ook alle andere hemellichamen rond waren. Het idee van een bolvormige aard kwam in plaats van een vroeger geloof in een platte Aarde: in de vroege Mesopotamische wereld werd de Aarde gezien als een platte schijf die in de oceaan dreef. Ook Griekse kaarten als van Anaximandros en Hecataeus gingen daarvan uit. Andere voorstellingen van de Aarde waren een ziggurat met zeven verdiepingen of de wereldas Axis mundi, in bijvoorbeeld de Avesta en oude Perzische geschriften. In werkelijkheid heeft de Aarde de vorm van een bol, die bij de polen is afgeplat - met een factor 1/300 - en iets uitpuilt aan de evenaar. Vroege ontwikkelingPythagorasPythagoras zag harmonie in het heelal en wilde deze verklaren. Hij beredeneerde dat de Aarde en andere planeten bollen moesten zijn, omdat de meest harmonische meetkundige vorm de cirkel was. PlatoPlato (427 v.Chr. - 347 v.Chr.) reisde naar Zuid-Italië om de wiskunde van Pythagoras te bestuderen. Toen hij terugkwam in Athene en zijn school vestigde begon ook hij te onderwijzen dat de Aarde een bol was. Als de mens hoog boven de wolken kon vliegen, zou hij de Aarde zien als "een bal gemaakt van twaalf stukken leer, geschakeerd, als een lappendeken van kleuren" (hetgeen ook aan de pentagondodecaëder doet denken). AristotelesAristoteles (384 v.Chr. - 322 v.Chr.) merkte op: "er zijn sterren gezien in Egypte en [...] Cyprus die niet gezien kunnen worden in de noordelijke gebieden." Omdat dit alleen kon gebeuren bij een gekromd oppervlak, nam hij ook aan dat de Aarde een bol was, "niet zo groot, omdat anders het effect van zo'n kleine verandering niet zo snel duidelijk zou zijn." (De caelo, 298a2-10) Aristoteles gaf natuurkundige argumenten en waarnemingen om het idee van een ronde Aarde te ondersteunen:
De concepten symmetrie, equilibrium en cyclische herhaling domineren Aristoteles' werk. In zijn Meteorologie scheidt hij de wereld in vijf klimaatzones: Twee gematigde gebieden worden gescheiden door een verzengende zone bij de equator, net zoals twee koude, ongastvrije gebieden, "een bij onze bovenste of noordelijke pool en de andere bij de [...] zuidelijke pool," allebei onbereikbaar en vol ijs. (Meteorologica, 362a31-35). EratosthenesEratosthenes (276 v.Chr. - 194 v.Chr.) schatte de omtrek van de Aarde rond 240 v.Chr.. Hij had van een plaats in Egypte gehoord waar de Zon bij de zomerzonnewende recht boven stond en bepaalde langs meetkundige weg dat de Aarde een omtrek van 250.000 stadia moest hebben. Deze schatting verbaast moderne schrijvers, omdat ze op zijn best binnen 2% van de waarde van de omtrek bij de evenaar ligt, 40.075 kilometer. De lengte van de door Eratosthenes gebruikte stadion is niet precies bekend, de stadion varieerde in de Oudheid van 157 tot 211 m. Claudius PtolemaeusClaudius Ptolemaeus (AD 90 - 168) woonde in Alexandrië, het centrum van kennis in de 2e eeuw. Rond 150 schreef hij zijn Geographia. Het eerste deel van de Geographia is een discussie over de gegevens en de methoden die hij gebruikt. Zoals met het model in de Almagest zet Ptolemaeus alles in groot verband. Hij kende coördinaten toe aan de plaatsen die hij kende, in een rooster die de globe omvatte. Breedte werd gemeten vanaf de equator, zoals tegenwoordig, maar Ptolemaeus drukte haar liever uit als de lengte van de langste dag dan in graden (de lengte van de dag op de zomer zonnewende wordt van 12 uur 24 uur als je van de equator naar de poolcirkel gaat). Hij plaatste de nulmeridiaan als uitgangspunt voor het berekenen van de lengte op het meest westelijke land dat hij kende, de "gezegende eilanden". Bij de herontdekking van de Canarische Eilanden rond 1300 werd algemeen aangenomen dat dit de westelijke eilanden van Ptolemaeus moesten zijn. Geographia gaf de landen Serica en Sinae (China) uiterst rechts weer, achter het eiland Taprobane (Sri Lanka) en Aurea Chersonesus (Zuidoost-Azië). Ptolemaeus bedacht ook instructies om kaarten te maken van de hele bewoonde wereld (oikoumenè) en van de Romeinse provincies. In het tweede deel van de Geographia gaf hij de benodigde topografische lijsten en opschriften voor zijn kaarten. Zijn oikoumenè omvatte 180 graden lengte van de Canarische Eilanden tot China, en ongeveer 81 graden breedte van de Pool tot de Sunda-eilanden en diep in Afrika; Ptolemaeus was er zich wel van bewust dat hij maar ongeveer een kwart van de wereld kende. AryabhattaHet werk van de klassieke Indiase astronoom en wiskundige Aryabhatta (ca. 476 - 550) betreft de bolvorm van de Aarde en de beweging van de planeten. De laatste twee delen van zijn magnum opus in het Sanskriet, de Aryabhatiya, die de Kalakriya ("tijdrekening") en de Gola ("bol") werden genoemd, stellen dat de Aarde bol is en dat haar omtrek 4967 yojanas is, wat in huidige eenheden 40.000 kilometer is.[1] Hij stelde ook dat de schijnbare rotatie van de hemellichamen veroorzaakt werd door de draaiing van de Aarde, en berekende de lengte van een siderische dag op 23 uur, 56 minuten en 4,1 seconden. Hoogstwaarschijnlijk beïnvloedden Aryabhata's resultaten de Europese astronomie, omdat de 8e-eeuwse Arabische versie van de Aryabhatiya in de 13e eeuw in het Latijn werd vertaald. BewijzenHoe kunnen we aantonen dat de Aarde niet plat kan zijn? Er zijn onder meer de volgende argumenten:
GeodesieGeodesie is de tak van wetenschap die zich bezighoudt met de meting en de vorm van de Aarde, haar zwaartekrachtveld en geodynamische fenomenen als (poolbeweging, getijden en aardkorstbeweging) in driedimensionale ruimte in de tijd. EllipsoïdeDe Aarde is enigszins afgeplat bij de polen. Daarom is de aardstraal niet overal gelijk.
Zie ookLiteratuur
Externe links
Bronnen, noten en/of referenties
Mediabestanden die bij dit onderwerp horen, zijn te vinden op de pagina Bolvormige Aarde op Wikimedia Commons.
|