AfrondenHet afronden van een getal is het verminderen van het aantal significante cijfers. Men rondt bijvoorbeeld een getal af om het aantal significante cijfers in overeenstemming te brengen met de nauwkeurigheid van het getal of met het doel waarvoor het getal dient. Zo zal het in veel gevallen voor een timmerman voldoende zijn het getal π af te ronden op 3 significante cijfers: π=3,1415... wordt afgerond tot 3,14. Er zijn verschillende vormen van afronden, afhankelijk van de situatie. Zo zal men bij het berekenen van het aantal bussen om een groep te vervoeren steeds naar boven afronden (Als 170 mensen vervoerd moeten worden met bussen van 50 personen zal men 3,4 naar 4 afronden), en bij het bepalen van een maximale dosis geneesmiddel naar onder. Afronden naar het dichtstbijzijnde veelvoud van een bepaalde (gehele, eventueel negatieve) macht van 10 wordt wel rekenkundig afronden genoemd, om dit te onderscheiden van afronden naar beneden of naar boven. Zo spreekt men bijvoorbeeld van rekenkundig afronden op twee cijfers achter de komma, en rekenkundig afronden op een geheel getal. In sommige gevallen, waaronder het onderwijs, rondt men af naar het dichtstbijzijnde significante getal. De Citogroep hanteert de volgende, vrij algemeen geldende, regels: Bij positieve getallen wordt het laatste cijfer van het afgeronde getal (te noemen: het relevante cijfer) als volgt bepaald:
Soms (bijvoorbeeld in de landmeetkunde) wordt, als het laatste cijfer een 5 is, naar het even getal afgerond, dat wil zeggen als het cijfer ervoor even is, wordt naar beneden afgerond (2,25 → 2,2), als het oneven is, naar boven (2,35 → 2,4). Dit heeft als voordeel dat de som van de afrondverschillen bij optellingen minimaal is, bijvoorbeeld:
Voorbeeldenpi (3,141592654...) afronden op:
1,7995 afronden op:
−1,235 afronden op:
Andere methoden van afrondenAfronden kan ook volgens andere regels gebeuren.
OptellingSoms worden in een uiteenzetting afgeronde waarden van een aantal grootheden vermeld en de afgeronde waarde van het totaal. Het genoemde totaal is dan niet altijd exact gelijk aan de som van de genoemde termen. Zo is bijvoorbeeld 5,3 + 6,3 = 11,6, bij afronding geeft dit de waarden 5, 6 en 12. De vermelding van de afgeronde som is dan dus niet alleen voor het gemak van de lezer, deze geeft een nauwkeuriger waarde dan wanneer de lezer zelf de afgeronde termen gaat optellen. Als de som een rond getal is, zoals 100%, doet het verschijnsel zich pas voor vanaf drie termen; 23,3%, 33,3% en 43,4% worden bijvoorbeeld afgerond tot 23%, 33% en 43%. Voor wie hier niet mee vertrouwd is, wordt deze mogelijkheid van afrondverschillen soms in een voetnoot vermeld, bijvoorbeeld 'Totalen zijn gebaseerd op onafgeronde bedragen en kunnen dus afwijken van de som van de getoonde reeksen'.[1] Hetzelfde kan zich voordoen bij andere berekeningen dan optelling. Zie ook
|