無理数の全体 P は実数直線R の Gδ-集合である。実際 P は、q が任意の有理数を亙るときの一点集合 {q} の R における補集合すべての交わりとして表せる。
有理数の全体 Q は実数直線 R の Gδ-集合ではない。実際、Q が開集合列 An の交わりに書けるとすると、各 An は(Q が R において稠密ゆえ)何れも R において稠密でなければならないが、上でやったように無理数全体の集合 P は稠密開集合の可算交叉として書けるから、P と Q との交わりをとれば R の稠密開集合の可算交叉が空集合となるものが存在することとなり、ベールの範疇定理に反する。
R 上の至る所微分可能な実数値函数の導函数の零点集合は Gδ-集合である。この零点集合が内部が空な稠密集合となることは、ポンペイウの構成法(英語版)から示される。
A 上の距離函数 σ で ρ|A(X の距離函数 ρ の A への制限)と(位相に関する意味で)同値であるようなものが存在して、(A, σ) がふたたび完備距離空間となること
Gδ-集合の重要な性質は、位相空間から距離空間への連続写像がその上で定義され得るということにある。厳密に言えば、そのような写像 f が連続となるような点全体の成す集合は -集合を成すということである。これは、点 p における連続性というのが Π0 2-式で定義されることによる。具体的に書けば、任意の正整数 n に対して p を含む開集合 U で任意の x, y ∈ U について d(x, y) < 1/n を満たすようなものが取れるが、一旦 n の値を固定して対応する部分集合 U が取れるような点 p の全体を考えるとそれ自身が(開集合の和として)開集合であり、ここで n に対して普遍量化子を附すことは得られた開集合たちの可算交叉をとることに対応するから、所期の結論を得る。実数直線においてはこの逆も成り立つ:
実数直線の任意の Gδ-部分集合 A に対し、適当な函数 f: R → R が存在して、f は A に属する点のみにおいて連続となるようにすることができる。
Roy A. Johnson (1970). "A Compact Non-Metrizable Space Such That Every Closed Subset is a G-Delta". The American Mathematical Monthly, Vol. 77, No. 2, pp. 172–176. on JStor