^Skyner, R.; McDonagh, J. L., Groom, C. R., van Mourik, T., Mitchell, J. B. O. (2015). “A Review of Methods for the Calculation of Solution Free Energies and the Modelling of Systems in Solution”. Phys Chem Chem Phys (RSC, PCCP) 17: 6174–91. doi:10.1039/C5CP00288E. PMID25660403.
^Allen and Tildesley. (1989). Computer Simulation of Liquids
^Jorgensen, W. L. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc.1981, 103, 335-340.
^H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, and J. Hermans, In Intermolecular Forces, edited by B. Pullman
(Reidel, Dordrecht, 1981), p. 331.
^ abJorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein (1983). “Comparison of simple potential functions for simulating liquid water”. J. Chem. Phys79: 926–935. doi:10.1063/1.445869.
^Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.; The; Pair Potentials, Effective (1987). “The missing term in effective pair potentials”. J. Phys. Chem91: 6269–6271. doi:10.1021/j100308a038.
^MacKerell, A. D.; Jr; Bashford, D.; Bellott, R. L.; Dunbrack, R. L.; Jr; Evanseck, J. D.; Field, M. J. et al. (1998). “All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins †”. J. Phys. Chem.102: 3586–3616. doi:10.1021/jp973084f.
^Mao, Y.; Zhang, Y.; Conductivity, Thermal; Viscosity, Shear; Specific; Water Models, Rigid (2012). “Thermal conductivity, shear viscosity and specific heat of rigid water models”. Chemical Physics Letters542: 37–41. doi:10.1016/j.cplett.2012.05.044.
^
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma (1987). “The missing term in effective pair potentials”. Journal of Physical Chemistry91: 6269–6271. doi:10.1021/j100308a038.
^
M. Praprotnik, D. Janezic and J. Mavri (2004). “Temperature Dependence of Water Vibrational Spectrum: A Molecular Dynamics Simulation Study”. Journal of Physical Chemistry A108: 11056–11062. doi:10.1021/jp046158d.
^Naoki Kumagai, Katsuyuki Kawamura & Toshio Yokokawa (1994). “An Interatomic Potential Model for H2O: Applications to Water and Ice Polymorphs”. Molecular Simulation12 (3-6). doi:10.1080/08927029408023028.
^Christian J. Burnham, Jichen Li, Sotiris S. Xantheas and Maurice Leslie (1999). “The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih”. J. Chem. Phys.110: 4566. doi:10.1063/1.478797.
^Bernal, J. D.; Fowler, R.H. (1933). “A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions”. J. Chem. Phys.1: 515. doi:10.1063/1.1749327.
^Jorgensen (1982). “Revised TIPS for simulations of liquid water and aqueous solutions”. J. Chem. Phys77: 4156–4163. doi:10.1063/1.444325.
^Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. (2004). “Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.”. J. Chem. Phys.120: 9665–9678. doi:10.1063/1.1683075.
^Abascal, J. L. F.; Sanz, E.; Fernández, R. García; Vega, C. (2005). “A potential model for the study of ices and amorphous water: TIP4P/Ice”. J. Chem. Phys.122: 234511. doi:10.1063/1.1931662.
^Abascal, J. L. F.; Vega, C. (2005). “A general purpose model for the condensed phases of water: TIP4P/2005”. J. Chem. Phys.123: 234505. doi:10.1063/1.2121687.
^Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. (2014). “Building Water Models: A Different Approach”. The Journal of Physical Chemistry Letters5 (21): 3863–3871. doi:10.1021/jz501780a.
^Piana, Stefano; Donchev, Alexander G.; Robustelli, Paul; Shaw, David E. (2015). “Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States”. The Journal of Physical Chemistry B119: 150312133835006. doi:10.1021/jp508971m. ISSN1520-6106.
^ abStillinger, F.H.; Rahman, A.; Improved (1974). “Improved simulation of liquid water by molecular dynamics”. J. Chem. Phys.60: 1545–1557. doi:10.1063/1.1681229.
^Mahoney, M. W.; Jorgensen (2000). “A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions”. J. Chem. Phys.112: 8910–8922. doi:10.1063/1.481505.
^Rick, S. W. (2004). “A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums”. J. Chem. Phys.120: 6085–6093. doi:10.1063/1.1652434.
^Nada, H. (2003). “An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H[sub 2]O”. J. Chem. Phys.118: 7401. doi:10.1063/1.1562610.
^Florova, P.; Sklenovsky, P.; Banas, P.; Otyepka, M. (2010). “Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact”. J. Chem. Theory Comput6: 3569–3579. doi:10.1021/ct1003687.
^Silverstein, K. A. T.; Haymet, A. D. J.; Dill, K. A.; Effect, Hydrophobic (1998). “A Simple Model of Water and the Hydrophobic Effect”. J. Am. Chem. Soc.120: 3166–3175. doi:10.1021/ja973029k.
^Medders, G.R.; Paesani, F. (2015). “Infrared and Raman Spectroscopy of Liquid Water through "First Principles" Many-Body Molecular Dynamics”. J. Chem. Theory Comput11: 1145–1154. doi:10.1021/ct501131j.