微分積分学におけると同様に、導函数によって重根の判定が可能である。係数環 R が体ならば A = R[x] はユークリッド環であり、この設定のもとでも「根の重複度」の概念が定義できる —任意の多項式 f とスカラー r に対して、非負整数 mr と多項式 g が一意的に存在して とできる。この mr を f の根としての r の重複度と呼ぶのであった—。ライプニッツ則を用いれば、この設定においても、f を繰り返し微分して r が根に現れないようにするために必要な微分の回数が mr であることが確認できる。
この判定法の有効性というのは、「一般には A に属する n-次多項式が重複度を込めて n 個の根を持つということは言えないけれど、係数体を(なかんづく、その代数閉包まで)拡大すればそうできる」のだけれども、こうしてしまうと単に R 上で考えたのでは出てこない根が重根となるかもしれないということにある(例えば、係数環 R を三元体F3 とするとき、多項式 は R において根を持たないが、導多項式は零多項式である(R およびその任意の拡大体において 3 = 0 となるのであった)から、代数閉包に移れば R における因数分解自体からでは見つからない重根がある)。その意味において、形式微分法は重複度の効果的な概念を与えるものになっている。
係数環 R が可換環であるときには、形式微分の上記定義と同値な(そして微分積分学で見るものとよく似た)別定義をあたえることができる。二変数多項式環 R[X, Y] において、その元 Y – X は、任意の自然数 n に対する二項式 Yn – Xn を整除するから、したがって任意の一変数多項式 f に対する f(Y) – f(X) も整除する。そのときの商を g と書けば、つまり と置けば、Y = X とした g(X, X) ∈ R[X] が f の(上で定義した)形式微分に一致することを見るのは難しくない。
実用においては、本節における定義は f として X において連続な Y の函数のクラスで行えば古典的な通常の微分の概念の捉え直しになるものである。さらに強く X, Y 両方に関して(多変数連続性の意味で)連続な函数のクラスで適用すれば、一様可微分性の概念が得られ、また f は連続的微分可能となる。同様にほかのクラスの函数(例えばリプシッツ函数のクラス)をとることにより、異なる毛色の可微分性概念を作ることができる。このように得られる微分法は、函数環の理論の一部を成すものである。