^Lima, Emanuel F de; Hornos, José E M (2005). “Matrix elements for the Morse potential under an external field”. J. Phys. B: At. Mol. Opt. Phys.38 (7): 815–825. doi:10.1088/0953-4075/38/7/004.
^ abLe Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). “Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)”. Journal of Chemical Physics131 (20): 204309. Bibcode: 2009JChPh.131t4309L. doi:10.1063/1.3264688.
^Le Roy, R. J.; Y. Huang; C. Jary (2006). “An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data”. Journal of Chemical Physics125 (16): 164310. Bibcode: 2006JChPh.125p4310L. doi:10.1063/1.2354502.
^Le Roy, Robert J.; R. D. E. Henderson (2007). “A new potential function form incorporating extended long-range behaviour: application to ground-state Ca2”. Molecular Physics105 (5–7): 663–677. Bibcode: 2007MolPh.105..663L. doi:10.1080/00268970701241656.
^Salami, H.; A. J. Ross; P. Crozet; W. Jastrzebski; P. Kowalczyk; R. J. Le Roy (2007). “A full analytic potential energy curve for the a3Σ+ state of KLi from a limited vibrational data set”. Journal of Chemical Physics126 (19): 194313. Bibcode: 2007JChPh.126s4313S. doi:10.1063/1.2734973.
^ abHenderson, R. D. E.; A. Shayesteh; J. Tao; C. Haugen; P. F. Bernath; R. J. Le Roy (4 October 2013). “Accurate Analytic Potential and Born–Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis”. The Journal of Physical Chemistry A117 (50): 131028105904004. Bibcode: 2013JPCA..11713373H. doi:10.1021/jp406680r.
^Shayesteh, A.; R. D. E. Henderson; R. J. Le Roy; P. F. Bernath (2007). “Ground State Potential Energy Curve and Dissociation Energy of MgH”. The Journal of Physical Chemistry A111 (49): 12495–12505. Bibcode: 2007JPCA..11112495S. doi:10.1021/jp075704a. PMID18020428.
^Dattani, N. S.; R. J. Le Roy (8 May 2013). “A DPF data analysis yields accurate analytic potentials for Li2(a) and Li2(c) that incorporate 3-state mixing near the c-state asymptote”. Journal of Molecular Spectroscopy (Special Issue)268: 199–210. arXiv:1101.1361. Bibcode: 2011JMoSp.268..199.. doi:10.1016/j.jms.2011.03.030.
^ abW. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state, https://arxiv.org/abs/1309.5870
^Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J. et al. (2013年). “High-resolution photoassociation spectroscopy of the 6Li2 c-state”. Phys. Rev. A87: pp. 052505. Bibcode: 2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505
^Xie, F.; L. Li; D. Li; V. B. Sovkov; K. V. Minaev; V. S. Ivanov; A. M. Lyyra; S. Magnier (2011). “Joint analysis of the Cs2 a-state and 1 g (33Π1g ) states”. Journal of Chemical Physics135 (2): 02403. Bibcode: 2011JChPh.135b4303X. doi:10.1063/1.3606397.
^Coxon, J. A.; P. G. Hajigeorgiou (2010). “The ground X 1Σ+g electronic state of the cesium dimer: Application of a direct potential fitting procedure”. Journal of Chemical Physics132 (9): 094105. Bibcode: 2010JChPh.132i4105C. doi:10.1063/1.3319739.
^Piticco, Lorena; F. Merkt; A. A. Cholewinski; F. R. W. McCourt; R. J. Le Roy (December 2010). “Rovibrational structure and potential energy function of the ground electronic state of ArXe”. Journal of Molecular Spectroscopy264 (2): 83–93. Bibcode: 2010JMoSp.264...83P. doi:10.1016/j.jms.2010.08.007.
^Ivanova, Milena; A. Stein; A. Pashov; A. V. Stolyarov; H. Knockel; E. Tiemann (2011). “The X2Σ+ state of LiCa studied by Fourier-transform spectroscopy”. Journal of Chemical Physics135 (17): 174303. Bibcode: 2011JChPh.135q4303I. doi:10.1063/1.3652755.
^Knockel, H.; S. Ruhmann; E. Tiemann (2013). “The X-state of Mg2 studied by Fourier-transform spectroscopy”. Journal of Chemical Physics138 (9): 094303. Bibcode: 2013JChPh.138i4303K. doi:10.1063/1.4792725.
^ abcdLi, Gang; I. E. Gordon; P. G. Hajigeorgiou; J. A. Coxon; L. S. Rothman (July 2013). “Reference spectroscopic data for hydrogen halides, Part II:The line lists”. Journal of Quantitative Spectroscopy & Radiative Transfer130: 284–295. Bibcode: 2013JQSRT.130..284L. doi:10.1016/j.jqsrt.2013.07.019.
^ abcd“Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI”. Journal of Quantitative Spectroscopy and Radiative Transfer151: 133–154. Bibcode: 2015JQSRT.151..133C. doi:10.1016/j.jqsrt.2014.08.028.
^Meshkov, Vladimir V.; Stolyarov, Andrey V.; Heaven, Michael C.; Haugen, Carl; LeRoy, Robert J. (2014). Direct-potential-fit analyses yield improved empirical potentials for the ground X1Σg+ state of Be2. 140. pp. 064315. doi:10.1063/1.4864355.
^Walji, Sadru-Dean; Sentjens, Katherine M.; Le Roy, Robert J. (2015). “Dissociation energies and potential energy functions for the ground X1Σ+ and “avoided-crossing” A1Σ+ states of NaH”. J. Chem. Phys.142 (4): 044305. doi:10.1063/1.4906086.
参考文献
CRC Handbook of chemistry and physics, Ed David R. Lide, 87th ed, Section 9, SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES pp. 9–82
Shore, Bruce W. (1973年). “Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential”. J. Chem. Phys.59 (12): p. 6450. Bibcode: 1973JChPh..59.6450S. doi:10.1063/1.1680025
Lincoln, R. C.; Kilowad, K. M.; Ghate, P. B. (1967年). “Morse-potential evaluation of second- and third-order elastic constants of some cubic metals”. Phys. Rev.157 (3): pp. 463–466. Bibcode: 1967PhRv..157..463L. doi:10.1103/PhysRev.157.463
Dong, Shi-Hai; Lemus, R.; Frank, A. (2001年). “Ladder operators for the Morse potential”. Int. J. Quant. Chem.86 (5): pp. 433–439. doi:10.1002/qua.10038
Zhou, Yaoqi; Karplus, Martin; Ball, Keith D.; Bery, R. Stephen (2002年). “The distance fluctuation criterion for melting: Comparison of square-well and Morse Potential models for clusters and homopolymers”. J. Chem. Phys.116 (5): pp. 2323–2329. doi:10.1063/1.1426419
I.G. Kaplan, in Handbook of Molecular Physics and Quantum Chemistry, Wiley, 2003, p207.