フラグメント分子軌道法(フラグメントぶんしきどうほう、英: Fragment Molecular Orbital method)、略してFMO法は、分子系をフラグメントに分割し、周囲のフラグメントからの静電ポテンシャルを考慮してフラグメントとフラグメントペアの電子状態を計算し、得られたフラグメントとフラグメントペアのエネルギーや電子密度を用いて、系全体のエネルギーや電子密度を計算する方法である。1999年に北浦和夫により提唱された[1]。
^K. Kitaura; E. Ikeo; T. Asada; T. Nakano; M. Uebayasi (1999). “Fragment molecular orbital method: an approximate computational method for large molecules”. Chem. Phys. Lett.313 (3-4): 701-706. doi:10.1016/S0009-2614(99)00874-X.
^P. Otto; J. Ladik (1975). “Investigation of the interaction between molecules at medium distances: I. SCF LCAO MO supermolecule, perturbational and mutually consistent calculations for two interacting HF and CH2O molecules”. Chem. Phys.8 (1-2): 192-200. doi:10.1016/0301-0104(75)80107-8.
^J. Gao (1997). “Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations”. J. Phys. Chem. B101 (4): 657-663. doi:10.1021/jp962833a.
^J. Gao, (1998), "A molecular-orbital derived polarization potential for liquid water." J. Chem. Phys. 109, 2346-2354.
^L. Huang, L. Massa, J. Karle, (2005), "Kernel energy method illustrated with peptides", Int. J. Quant. Chem 103, 808-817
^E. E. Dahlke, D. G. Truhlar (2007) "Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters", J. Chem. Theory Comput. 3, 46-53
^S. Hirata, M. Valiev, M. Dupuis, S. S. Xantheas, S. Sugiki, H. Sekino, (2005) Mol. Phys. 103, 2255
^M. Kamiya, S. Hirata, M.
Valiev, (2008), J. Chem. Phys. 128, 074103
^M. S. Gordon, D. G. Fedorov, S. R. Pruitt, L. V. Slipchenko, (2012) "Fragmentation Methods: A Route to Accurate Calculations on Large Systems.", Chem. Rev. 112, 632-672.
^“Application of Fragment Molecular Orbital (FMO) Method to Nano-Bio Field”. J. Comput. Chem. Jpn.6 (3): 173-184. (2007).
^The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems, edited by D. G. Fedorov, K. Kitaura, CRC Press, Boca Raton, Florida, 2009 ISBN978-1-4200-7848-0
^"(a) D. G. Fedorov, K. Kitaura, Theoretical development of the fragment molecular orbital (FMO) method and (b) T. Nakano, Y. Mochizuki, K. Fukuzawa, S. Amari, S. Tanaka, Developments and applications of ABINIT-MP software based on the fragment molecular orbital method in Modern methods for theoretical physical chemistry of biopolymers, edited by E. Starikov, J. Lewis, S. Tanaka, Elsevier, Amsterdam, 2006, ISBN978-0-444-52220-7
^T. Nagata, D. G. Fedorov, K. Kitaura (2011). "Mathematical Formulation of the fragment molecular orbital method" in Linear-Scaling Techniques in Computational Chemistry and Physics. R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczyński (Eds.), Springer, New York, pp. 17-64.
^Y. Komeiji, Y. Mochizuki, T. Nakano, H. Mori (2012). "Recent advances in fragment molecular orbital-based molecular dynamics (FMO-MD) simulations", in Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang (Ed.), Intech, pp. 3-24.
^D. G. Fedorov et al. (2007). “Extending the Power of Quantum Chemistry to Large Systems with the Fragment Molecular Orbital Method”. J. Phys. Chem. A111 (30): 6904-6914. doi:10.1021/jp0716740. PMID17511437.
^D. G. Fedorov, T. Nagata, K. Kitaura (2012) Exploring chemistry with the fragment molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562-7577
^S. Tanaka, Y. Mochizuki, Y. Komeiji, Y. Okiyama, K. Fukuzawa (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys. Chem. Chem. Phys. 16 (2014) 10310-10344
^Y. Nishimoto, D. G. Fedorov, S. Irle (2014) Density-functional tight-binding combined with the fragment molecular orbital method. J. Chem. Theor. Comput. DOI: 10.1021/ct500489d