パップス=ギュルダンの定理パップス・ギュルダンの定理(英: Pappus–Guldinus theorem)は、回転体の表面積と体積に関する相互に関連のある定理である[1]。パップスの重心定理 (Pappus' centroid theorem)、パップスの定理[2] (Pappus' theorem)、ギュルダンの定理 (Guldinus theorem) とも呼ばれる。アレキサンドリアのパップスによって4世紀に発見され、後にパウル・ギュルダンによって独立に発見された。 第一定理平面上にある有界な曲線 C の長さを s とし、C と同じ平面上にあり C と共有点を持たない軸 l の周りで C を一回転させた回転面の面積を S とする。回転させる曲線 C の重心 G から回転軸 l までの距離を R としたとき、
が成り立つ。この式は、
と解釈することができる。 第二定理平面上にある図形 F の面積を S とし、F と同じ平面上にあり F を通らない軸 l の周りで F を一回転させた回転体の体積を V とする。回転させる図形 F の重心 G から回転軸 l までの距離を R としたとき、
が成り立つ。この式は、
と解釈することができる。 脚注外部リンク
|