Teorema di Perron-FrobeniusIl teorema di Perron-Frobenius afferma che, se è una matrice non negativa (cioè, con tutti gli elementi maggiori o uguali a zero) primitiva e irriducibile allora
Il teorema di Perron-Frobenius è un risultato abbastanza potente ma elementare di algebra lineare che solitamente non si vede nei primi corsi. Una sua applicazione è per esempio quella di assicurare l'esistenza di misure invarianti per catene di Markov finite. StoriaIl teorema fu enunciato da Perron nei primi del Novecento e da lui dimostrato nel caso particolare in cui ha tutti gli elementi positivi; fu poi esteso da Frobenius al caso qui riportato e a casi più complessi di matrici che mandano un cono di in sé. Helmut Wielandt trovò poi una dimostrazione particolarmente breve ed elegante del teorema. Collegamenti esterni
|