Ottimizzazione convessaL'ottimizzazione convessa è un sottocampo dell'ottimizzazione matematica che studia il problema della minimizzazione delle funzioni convesse (o, in modo equivalente, la massimizzazione di funzioni concave) su insiemi convessi. Molte classi di problemi di ottimizzazione convessa ammettono algoritmi con tempo polinomiale dove l'ottimizzazione matematica in generale è NP-hard.[1][2][3] ProprietàLa convessità induce alcune proprietà interessanti che semplificano l’analisi.
La prima proprietà si dimostra per assurdo. Assumendo l'esistenza di un ottimo locale e di un ottimo globale , si impone la condizione di convessità per mostrare che non esiste un intorno di raggio nel quale può soddisfare la definizione di ottimo locale. ApplicazioniL'ottimizzazione convessa ha applicazioni in diverse discipline come nei sistemi di controllo, stima ed elaborazione dei segnali, nella progettazione di circuiti elettronici, e nelle reti, nell'analisi di dati e nella modellazione, in finanza e in statistica[6]. Con i recenti avanzamenti nel calcolo e negli algoritmi di ottimizzazione, la programmazione convessa è quasi semplice come la programmazione lineare. Note
Bibliografia
Voci correlate
Altri progetti
Collegamenti esterni
|