Funzione associata di Legendre

I polinomi associati di Legendre sono polinomi definibili direttamente a partire dai polinomi di Legendre, il cui impiego è particolarmente utile nella descrizione delle armoniche sferiche e quindi nella loro applicazione in meccanica quantistica.

Definizione

Sia un intero naturale, il polinomio di Legendre di ordine ed un intero compreso tra ed . Si definiscono le funzioni associate di Legendre come:

ovvero

Si estende la definizione a valori negativi del secondo indice tramite l'espressione

che conduce a

Queste definizioni permettono poi di esprimere le armoniche sferiche in funzione delle funzioni associate tramite la relazione

per valori positivi di . Le armoniche sferiche con valori di negativi sono tutte a coefficiente positivo (senza considerare quindi il comportamento del Polinomio di Legendre e della funzione esponenziale) e si ottengono dalla seguente relazione

Ne consegue quindi che per valori di negativi le armoniche sferiche sono identiche alle stesse con positivi fuorché in alcuni aspetti:

1) il segno del coefficiente è sempre positivo, anziché a segni alterni, poiché il termine nell'armonica sferica moltiplica lo stesso presente nella relazione sopra;

2) la funzione esponenziale ha il segno dell'esponente invertito, perché si richiede il complesso coniugato dell'armonica sferica. Ciò non grava sul polinomio di Legendre perché esso è a variabile reale.

Voci correlate

Collegamenti esterni

Controllo di autoritàGND (DE4333224-9