Univers (logique)En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Théorie élémentaire des ensembles et probabilitésDans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels. Cela permet des simplifications (par exemple, la notion de complémentaire d'un ensemble peut être rendue « absolue », en définissant par défaut le complémentaire de A comme l'ensemble des x de U n'appartenant pas à A ; de même, tout comme l'union d'une famille vide d'ensembles est l'ensemble vide, on pourra définir l'intersection d'une famille vide comme étant U tout entier), et se prête bien à toutes les activités usuelles des mathématiciens : l'étude de la topologie de R, par exemple, ne peut se faire dans U = R, mais il suffit pour y parvenir de changer d'univers, en prenant pour U dans ce cas l'ensemble des parties de R. Ce point de vue a été systématisé par N. Bourbaki dans sa description des structures mathématiques[1]. C'est également ce point de vue qui est adopté dans la plupart des modèles de base de la théorie des probabilités : on s'intéresse à un ensemble (appelé univers) sur lequel est défini une mesure, et à tous ses sous-ensembles (mesurables), appelés évènements. Théorie axiomatique des ensembles et théorie des modèlesD'un point de vue axiomatique, il est possible de parler d'un « univers » en deux sens distincts :
Théorie des catégoriesSans vouloir nécessairement rentrer dans tous les détails techniques précédents, certaines disciplines, telles que la théorie des catégories, ont besoin de pouvoir considérer comme un ensemble la classe de tous les objets qu'ils étudient[4]. Grothendieck a proposé d'adjoindre à ZFC un nouvel axiome, l'axiome des univers, lequel postule que tout ensemble appartient à un univers de Grothendieck, c'est-à-dire à un ensemble stable pour les opérations usuelles définies par les axiomes de ZFC, l'union et l'ensemble des parties. Cet axiome (qui est étroitement lié à la notion de cardinal inaccessible) permet alors en pratique de construire des petites catégories (des catégories dont les éléments, objets et flèches, forment des ensembles) contenant tous les objets dont on peut avoir besoin : si U est un univers de Grothendieck, la catégorie des groupes éléments de U est une petite catégorie, ayant essentiellement les mêmes propriétés que la catégorie de tous les groupes, qui, elle, est une classe propre. Notes et références(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Universe (mathematics) » (voir la liste des auteurs).
Voir aussi |